Home
Class 12
MATHS
If A^2-A+I=0, then the inverse of A is a...

If `A^2-A+I=0,` then the inverse of `A` is a. `A^(-2)` b. `A+I` c. `I-A` d. `A-I`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If A^2-A +I = 0 , then the inverse of A is: (A) A+I (B) A (C) A-I (D) I-A

If A^2-A +I = 0 , then the inverse of A is: (A) A+I (B) A (C) A-I (D) I-A

If A is a square matrix such that A^2-A+I =0 , then the inverse of A is

If A^2+A+I=0 , then A is non-singular A!=0 (b) A is singular A^(-1)=-(A+I)

If A is non-singular and (A-2I)(A-4I)=0 , then ,1/6A+4/3A^(-1) is equal to a. 0I b. 2I c. 6I d. I

If A is a square matrix such that A^2=A ,then (I+A)^3-7A is equal to: (a) A (b) I-A (c) I (d) 3A

If i^2=-1, then the sum i+i^2+i^3+... upto 1000 terms is equal to a. 1 b. -1 c. i d. 0

If A is a square matrix such that A^2=I , then (A-I)^3+(A+I)^3-7A is equal to (a) A (b) I-A (c) I+A (d) 3A

If B, C are square matrices of same order such that C^(2)=BC-CB and B^(2)=-I , where I is an identity matrix, then the inverse of matrix (C-B) is

The value of (1+i)(1+i^2)(1+i^3)(1+i^4) is a. 2 b. 0 c. 1 d. i