Home
Class 12
MATHS
Let K be a positive real number and A=[(...

Let K be a positive real number and `A=[(2k-1,2sqrt(k),2sqrt(k)),(2sqrt(k),1,-2k),(-2sqrt(k),2k,-1)]` and `B=[(0,2k-1,sqrt(k)),(1-2k,0,2),(-sqrt(k),-2sqrt(k),0)]`. If det (adj A) + det (adj B) `=10^(6)`, then `[k]` is equal to ______ .
[Note : adj M denotes the adjoint of a square matrix M and `[k]` denotes the largest integer less than or equal to `k`.]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let K be a positive real number and A=[2k-1 2sqrt(k)2sqrt(k)2sqrt(k)1-2k-2sqrt(k)2k-1]a n dB=[0 2k-1sqrt(k)1-2k0 2-sqrt(k)-2sqrt(k)0] . If det (a d jA)+det(a d jB)=10^6,t h e n[k] is equal to. [Note: a d jM denotes the adjoint of a square matix M and [k] denotes the largest integer less than or equal to K ].

Let A=[(2,0,7),(0,1,0),(1,-2,1)] and B=[(-k,14k,7k),(0,1,0),(k,-4k,-2k)] . If AB=I , where I is an identity matrix of order 3, then the sum of all elements of matrix B is equal to

If sum_(k = 1)^(oo) (1)/((k + 2)sqrt(k) + ksqrt(k + 2)) = (sqrt(a) + sqrt(b))/(sqrt(c)) , where a, b, c in N and a,b,c in [1, 15] , then a + b + c is equal to

Find the sum of the series sum_(k=1)^(360)(1/(ksqrt(k+1)+(k+1)sqrt(k)))

Let S_(k) = (1+2+3+...+k)/(k) . If S_(1)^(2) + s_(2)^(2) +...+S_(10)^(2) = (5)/(12)A , then A is equal to

If for a matrix A, absA=6and adj A= {:[(1,-2,4),(4,1,1),(-1,k,0)]:} , then k is equal to

If one root x^2-x-k=0 is square of the other, then k= a. 2+-sqrt(5) b. 2+-sqrt(3) c. 3+-sqrt(2) d. 5+-sqrt(2)

Distance between line r=i+j+k+lambda(2i+j+4k) and plane rdot(i+2j-k)=3 is (1) 4/(sqrt(6)) (2) 5/(sqrt(6)) (3) 1/(sqrt(6)) (4) 0 (5) 2/(sqrt(6))

sqrt(2k^(2)+17)-x=0 If k gt 0 and x = 7 in the equation above, what is the value of k ?

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to