Home
Class 12
MATHS
If A is an invertible matrix, then (a d...

If `A` is an invertible matrix, then `(a d jdotA)^(-1)` is equal to a.`a d jdot(A^(-1))` b. `A/(d e tdotA)` c. `A` d. `(detA)A`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is an invertible matrix of order 2, then det (A^(-1)) is equal to (A) det (A) (B) 1/(det(A) (C) 1 (D) 0

If A is an invertible matrix of order 2, then det (A^(-1)) is equal to(a) det (A) (B) 1/(det(A) (C) 1 (D) 0

If A is an invertble matrix of order 2 then (det A ^-1) is equal to- a.det A b.1/ det A c. 1 d. 0

If A is an invertible matrix then det(A^-1) is equal to (A) 1 (B) 1/|A| (C) |A| (D) none of these

If A is an invertible matrix then det(A^-1) is equal to (A) 1 (B) 1/|A| (C) |A| (D) none of these

If A is an invertible matrix of order 3\ and |A|=5, then find |a d jdotA|dot

If A is an orthogonal matrix then A^(-1) equals a. A^T b. A c. A^2 d. none of these

If A is a 3xx3 skew-symmetric matrix, then trace of A is equal to -1 b. 1 c. |A| d. none of these

If A and B are invertible matrices, which of the following statement is not correct. a d j\ A=|A|A^(-1) (b) det(A^(-1))=(detA)^(-1) (c) (A+B)^(-1)=A^(-1)+B^(-1) (d) (A B)^(-1)=B^(-1)A^(-1)

A is a square matrix of order 3\ and |A|=7. Write the value of |a d jdotA|