Home
Class 12
MATHS
If A=[[-1, 1],[ 0,-2]] , then prove tha...

If `A=[[-1, 1],[ 0,-2]]` , then prove that `A^2+3A+2I=Odot` Hence, find `Ba n dC` matrices of order 2 with integer elements, if `A=B^3+C^3dot`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[0 1 0 0] , prove that (a I+b A)^n=a^n\ I+n a^(n-1)\ b A where I is a unit matrix of order 2 and n is a positive integer.

Let A,B and C be square matrices of order 3xx3 with real elements. If A is invertible and (A-B)C=BA^(-1), then

If A ,Ba n dC three matrices of the same order, then prove that A=B rArr A+C=B+C

If A=[(2,-3),(3,4)], show the A^2-6A+17I=0. Hence find A^-1

If A=[{:(,2,-1),(,-1, 3):}]" evaluate "A^2-3A+3I , where I is a unit matrix of order 2.

If A=[[2,-1],[-1, 2]] and I is the identity matrix of order 2, then show that A^2=4A-3I Hence find A^(-1) .

If A and B are square matrices of order 3 such that |A| = – 1, |B| = 3 , then find the value of |2AB| .

if A=[{:(0),(1),(2):}]and B=[3" "2" "1], then show that : (AB)'=B'A'

If A=[[2,-1],[ 3, 2]] and B=[[0, 4],[-1, 7]] , find 3A^2-2B+I .