Home
Class 12
MATHS
If A=1/3|[1, 2, 2], [2, 1,-2],[a,2,b]| i...

If `A=1/3|[1, 2, 2], [2, 1,-2],[a,2,b]|` is an orthogonal matrix, then `a=-2` b. `a=2,b=1` c. `b=-1` d. `b=1`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is an orthogonal matrix then A^(-1) equals a. A^T b. A c. A^2 d. none of these

STATEMENT -1 : A=(1)/(3){:[(1,-2,2),(-2,1,2),(-2,-2,-1)]:} is an orthogonal matrix and STATEMENT-2 : If A and B are otthogonal, then AB is also orthogonal.

if A=[(1,2,2),(2,1,-2),(a,2,b)] is a matrix satisfying A A'=9I_(3,) find the value of |a|+|b|.

If A=[[1,-1],[ 2, 1]],B=[[a,1],[b,-1]]a n d(A+B)^2=A^2+B^2+2A B ,t h e n a. a=-1 b. a=1 c. b=2 d. b=-2

If A=|[1, 1, 1],[a, b, c],[ a^2,b^2,c^2]| , B=|[1,bc, a],[1,ca, b],[1,ab, c]| , then

If A= [[1,2],[3,4]] , adjA= [[4,a],[-3,b]] , then the values of a and b are: (a) a=-2, b=1 (b) a=2, b= 4 (c) a=2, b=-1 (d) a=1, b=-2

If A=[[1,2,-3] , [5,0,2] , [1,-1,1]] and B=[[3,-1,2] , [4,2,5] , [2,0,3]] then find matrix C such that A+2C=B

If A=[[1,-1],[ 2,-1]] and B=[[a,1],[b,-1]] and (A+B)^2=A^2+B^2, then find the value of a and b .

If x+2 is a factor of x^2+a x+2b and a+b=4 , then (a) a=1,\ b=3 (b) a=3,\ b=1 (c) a=-1,\ b=5 (d) a=5,\ b=-1

Given A=[[1,2,-3],[5,0,2],[1,-1,1]] and B=[[3,-1,2],[4,2,5],[2,0,3]] , find the matrix C such that A+C=B.