Home
Class 12
MATHS
If A=[a("ij")](4xx4), such that a("ij")=...

If `A=[a_("ij")]_(4xx4)`, such that `a_("ij")={(2",","when "i=j),(0",","when "i ne j):}`, then `{("det (adj (adj A))")/(7)}` is (where `{*}` represents fractional part function)

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[a_(ij)]_(3xx3) be such that a_(ij)=[{:(3, " when",hati=hatj),(0,,hati ne hatj):}" then " {("det (adj(adj A))")/(5)} equals : ( where {.} denotes fractional part function )

let A={a_(ij)}_(3xx3) such that a_(ij)={3 , i=j and 0,i!=j . then {det(adj(adjA))/5} equals: (where {.} represents fractional part)

If A=[a_(ij)]_(2xx2) where a_(ij)={{:(1",",if, I ne j),(0",", if,i=j):} then A^(2) is equal to

If matrix A=[a_(ij)]_(2x2), where a_(ij)={{:(1"," , i ne j),(0",", i=j):} then A^(3) is equal to

If A=[a_(i j)] is a 2xx2 matrix such that a_(i j)=i+2j , write A .

Let A=[a_(ij)]_(5xx5) is a matrix such that a_(ij)={(3,AA i= j),(0,Aai ne j):} . If |(adj(adjA))/(3)|=(sqrt3)^(lambda), then lambda is equal to (where, adj(M) represents the adjoint matrix of matrix M)

Let A=[a_(ij)]_(mxxn) be a matrix such that a_(ij)=1 for all I,j. Then ,

If matrix A = [a_(i j)]_(2 xx 2) , where a_(i j) = {("1 if",i ne j),("0 if",i = j):} then A^(2) is equal to

If matrix A=[a_(ij)]_(2X2) , where a_(ij)={[1,i!=j],[0,i=j]}, then A^2 is equal to

If matrix A=[a_(ij)]_(2X2) , where a_(ij)={[1,i!=j],[0,i=j]}, then A^2 is equal to