Home
Class 12
MATHS
If y+x(dy)/(dx) = x(phi(xy))/(phi^(')(xy...

If `y+x(dy)/(dx) = x(phi(xy))/(phi^(')(xy))`, then `phi(xy)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

if y+x(dy)/(dx)=x(phi(xy))/(phi'(xy)) then phi(xy) is equation to

Let (dy)/(dx) = (y phi'(x)-y^(2))/(phi(x)) , where phi(x) is a function satisfies phi(1) = 1, phi(4) = 1296 . If y(1) = 1 then y(4) is equal to__________

(dy)/(dx) = (2xy)/(x^(2)-1-2y)

IF x ( dy )/(dx) + y=x . ( f ( x . y) )/( f'(x.y)) then f ( x . y) is equal to ( K being an arbitary constant )

(dy)/(dx) + (xy)/(1-x^(2))=xsqrt(y)

If phi(x)=log_(8)log_(3)x , then phi'(e ) is equal to

Solve (dy)/(dx)=(yphi'(x)-y^(2))/(phi(x)),"where" " "phi(x) is a given function.

If phi (x)=phi '(x) and phi(1)=2 , then phi(3) equals

Solve (dy)/(dx)+y phi'(x)=phi(x).phi'(x), "where" " "phi(x) is a given function.

If phi (x) =int_(1//x)^(sqrt(x)) sin(t^(2))dt then phi ' (1)is equal to