Home
Class 12
MATHS
The solution of (dy)/(dx)=(a x+h)/(b y+k...

The solution of `(dy)/(dx)=(a x+h)/(b y+k)` represent a parabola when (a) (a) ` a=0,b!=0` (b)` a!=0,b!=0` (c) ` b=0,a!=0` (d) ` a=0,b in R `

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

the solution of the differential equation dy/dx = ax + b , a!=0 represents

Let f(x)=(ax + b )/(cx+d) . Then the fof (x)=x , provided that : (a!=0, b!= 0, c!=0,d!=0)

Let f(x)=(ax + b )/(cx+d) . Then the fof (x)=x , provided that : (a!=0, b!= 0, c!=0,d!=0)

If 2x-3y=7 and (a+b)x-(a+b-3)y=4a+b represent coincident lines, then a and b satisfy the equation (a) a+5b=0 (b) 5a+b=0 (c) a-5b=0 (d) 5a-b=0

If f(x)=a|sinx|+b\ e^(|x|)+c\ |x|^3 and if f(x) is differentiable at x=0 , then a=b=c=0 (b) a=0,\ \ b=0;\ \ c in R (c) b=c=0,\ \ a in R (d) c=0,\ \ a=0,\ \ b in R

Let the parabolas y=x(c-x)a n dy=x^2+a x+b touch each other at the point (1,0). Then (a) a+b+c=0 (b) a+b=2 (c) b-c=1 (d) a+c=-2

The straight line a x+b y+c=0 , where a b c!=0, will pass through the first quadrant if (a) a c >0,b c >0 (b) ac >0 or b c 0 or a c >0 (d) a c<0 or b c<0

Triangle formed by variable lines (a+b)x+(a-b)y-2ab=0 and (a-b)x+(a+b)y-2ab=0 and x+y=0 is (where a, b in R )

The equation of y-axis are (A) x=0,y=0 (B) x=0,z=0 (C) y=0,z=0 (D) none of these

If b^2>4a c then roots of equation a x^4+b x^2+c=0 are all real and distinct if: (a) b 0 (b) b 0,c>0 (c) b>0,a>0,c>0 (d) b>0,a<0,c<0