Home
Class 12
MATHS
Consider an event for which probability ...

Consider an event for which probability of success is . Statement 1: Probability than in `n` trials, there are `r` successes where `r=4k` and `k` is an integer is `1/4+1/(2^(n//2+1))cos((npi)/4)` Statement 2: `.^n C_0+^n C_4+^n C_8......... =2^(n//2)sin((npi)/4)` .

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ^n C_0+^n C_3+^n C_6+=1/3(2^n+2cos((npi)/3)) .

Prove that .^n C_0 . ^(2n) C_n- ^n C_1 . ^(2n-2)C_n+^n C_2 . ^(2n-4)C_n-=2^ndot

Prove that ""^(n)C_(3)+""^(n)C_(7) + ""^(n)C_(11) + ...= 1/2{2^(n-1) - 2^(n//2 )sin"" (npi)/(4)}

The value of |1 1 1^n C_1^(n+2)C_1^(n+4)C_1^n C_2^(n+2)C_2^(n+4)C_2| is

Prove that (1+i)^n+(1-i)^n=2^((n+2)/2).cos((npi)/4) , where n is a positive integer.

Prove that (1+i)^n+(1-i)^n=2^((n+2)/2).cos((npi)/4) , where n is a positive integer.

Statement-1: sin (pi+theta)=-sin theta Statement-2: sin(npi+theta)=(-1)^(n) sin theta , n in N .

Statement -1: sum_(r=0)^(n) r(""^(n)C_(r))^(2) = n (""^(2n -1)C_(n-1)) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))^(2)= ""^(2n)C_(n)

Prove that sum_(r=1)^(k) (-3)^(r-1) ""^(3n)C_(2r-1) = 0 , where k = 3n//2 and n is an even integer.

Probability if n heads in 2n tosses of a fair coin can be given by prod_(r=1)^n((2r-1)/(2r)) b. prod_(r=1)^n((n+r)/(2r)) c. sum_(r=0)^n((^n C_r)/(2^n))^2 d. (sumr=0n(^n C_r)^2)/(sumr=0 2n(^(2n)C_r)^)