Home
Class 12
MATHS
An unbiased normal coin is tossed n tim...

An unbiased normal coin is tossed `n` times. Let `E_1:` event that both heads and tails are present in `n` tosses. `E_2:` event that the coin shows up heads at most once. The value of `n` for which `E_1a n dE_2` are independent is _________.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

An unbiased normal coin is tossed n times. Let E_1: event that both heads and tails are present n tosses. E_2: event that the coin shows up heads at most once. The value of n for which E_1a n dE_2 are independent is _________.

An unbiased normal coin is tossed n times. Let E_(1): event that both heads and tails are present in n tosses. E_(2): event that the coin shows up heads at most once. The value of n for which E_(1) and E_(2) are independent is ______.

An unbiased normal coin is tossed n times. Let E_(1): event that both heads and tails are present in n tosses. E_(2): event that the coin shows up heads at most once. The value of n for which E_(1) and E_(2) are independent is ______.

A fair coin is flipped n times. Let E be the event "a head is obtained on the first flip" and let F_(k) be the event "exactly k heads are obtained". Then the value of n/k for which E and F_(k) are independent is _____.

A fair coin is flipped n times. Let E be the event "a head is obtained on the first flip" and let F_(k) be the event "exactly k heads are obtained". Then the value of n/k for which E and F_(k) are independent is _____.

A coin is tossed 5 times. Find the number of ways of getting 3 head and 2 tail.

A coin is tossed 6. times In how many different ways can we obtain 4 heads and 2 tails?

An unbiased coin is tossed n times. Let X denote the number of times head occurs. If P(X=4), P(X=5) and P(X=6) are in A.P, then the value of n can be

An unbiased coin is tossed n times. Let X denote the number of times head occurs. If P(X=4), P(X=5) and P(X=6) are in A.P, then the value of n can be

A coin is tossed n times. The number of all possible events is