Home
Class 11
MATHS
Prove that for all values of theta , the...

Prove that for all values of `theta` , the locus of the point of intersection of the lines `xcostheta+ysintheta=a` and `xsintheta-ycostheta=b` is a circle.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CENGAGE ENGLISH|Exercise All Questions|886 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

The locus of the points of intersection of the lines x cos theta+y sin theta=a and x sin theta-y cos theta=b , ( theta= variable) is :

Find the locus of the point of intersection of lines xcosalpha+ysinalpha=a and xsinalpha-ycosalpha=b(alpha is a variable).

Find the locus of the point of intersection of lines xcosalpha+ysinalpha=a and xsinalpha-ycosalpha=b(alpha is a variable).

Find the locus of the mid points of the portion of the lines xsintheta+y costheta=p intercepted between the axes.

If (alpha, beta) is a point of intersection of the lines xcostheta +y sin theta= 3 and x sin theta-y cos theta= 4 where theta is parameter, then maximum value of 2^((alpha+beta)/(sqrt(2)) is

The locus of the point of intersection of tangents to the circle x=a cos theta, y=a sin theta at points whose parametric angles differ by pi//4 is

If m is a variable, then prove that the locus of the point of intersection of the lines x/3-y/2=m and x/3+y/2=1/m is a hyperbola.

The locus of point of intersection of the lines y+mx=sqrt(a^2m^2+b^2) and my-x=sqrt(a^2+b^2m^2) is

Find the locus of the point of intersection of perpendicular tangents to the circle x^(2) + y^(2)= 4

Locus of the point of intersection of perpendicular tangents to the circles x^(2)+y^(2)=10 is

CENGAGE ENGLISH-CONIC SECTIONS-All Questions
  1. Prove that the maximum number of points with rational coordinates on a...

    Text Solution

    |

  2. Let C1 and C2 are circles defined by x^2+y^2 -20x+64=0 and x^2+y^2+...

    Text Solution

    |

  3. Prove that for all values of theta , the locus of the point of interse...

    Text Solution

    |

  4. The chord of contact of tangents from a point P to a circle passes thr...

    Text Solution

    |

  5. Find the length of the chord x^2+y^2-4y=0 along the line x+y=1. Also f...

    Text Solution

    |

  6. The chords of contact of tangents from three points A ,Ba n dC to the ...

    Text Solution

    |

  7. Tangents are drawn to the circle x^2+y^2=a^2 from two points on the ax...

    Text Solution

    |

  8. The common chord of the circle x^2+y^2+6x+8y-7=0 and a circle passing ...

    Text Solution

    |

  9. P is the variable point on the circle with center at CdotC A and C B a...

    Text Solution

    |

  10. If the angle between the tangents drawn to x^2+y^2+2gx+2fy+c=0 from (0...

    Text Solution

    |

  11. Find the locus of center of circle of radius 2 units, if intercept cut...

    Text Solution

    |

  12. Any circle through the point of intersection of the lines x+sqrt(3)y=1...

    Text Solution

    |

  13. A straight line moves so that the product of the length of the perp...

    Text Solution

    |

  14. The number of such points (a+1,sqrt3a), where a is any integer, lying...

    Text Solution

    |

  15. A tangent is drawn to each of the circles x^2+y^2=a^2 and x^2+y^2=b^2d...

    Text Solution

    |

  16. Perpendiculars are drawn, respectively, from the points Pa n dQ to the...

    Text Solution

    |

  17. Find the locus of the midpoint of the chord of the circle x^2+y^2-2x-2...

    Text Solution

    |

  18. Find the center of the smallest circle which cuts circles x^2+y^2=1 an...

    Text Solution

    |

  19. A point moves so that the sum of the squares of the perpendiculars let...

    Text Solution

    |

  20. From a point P on the normal y=x+c of the circle x^2+y^2-2x-4y+5-lambd...

    Text Solution

    |