Home
Class 11
MATHS
Let xa n dy be real variables satisfying...

Let `xa n dy` be real variables satisfying `x^2+y^2+8x-10 y-40=0` . Let `a=max{sqrt((x+2)^2+(y-3)^2)}` and `b=min{sqrt((x+2)^2+(y-3)^2)}` . Then (a)`a+b=18` (b) `a+b=sqrt(2)` (c) `a-b=4sqrt(2)` (d) `adotb=73`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CENGAGE ENGLISH|Exercise All Questions|886 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

Let x, y be real variable satisfying x^(2) + y^(2) + 8x - 10y - 59 = 0 Let a = max {(x-3)^(2) + (y-4)^(2) and b = min {(x-3)^(2) + (y-4)^(2)) , then a + b + 2010 is ______ .

If a="max"{(x+2)^(2)+(y-3)^(2)} and b="min"{(x+2)^(2)+(y-3)^(2)} where x, y satisfying x^(2)+y^(2)+8x-10y-40=0 then :

min[(x_1-x_2)^2+(5+sqrt(1-x_1^2)-sqrt(4x_2))^2],AAx_1,x_2 in R , is (a) 4sqrt(5)-1 (b) 3-2sqrt(2) (c) sqrt(5)+1 (d) sqrt(5)-1

The slopes of the common tangents of the ellipse (x^2)/4+(y^2)/1=1 and the circle x^2+y^2=3 are +-1 (b) +-sqrt(2) (c) +-sqrt(3) (d) none of these

Length of the latus rectum of the parabola sqrt(x) +sqrt(y) = sqrt(a) is (a) a sqrt(2) (b) (a)/(sqrt(2)) (c) a (d) 2a

If y=sqrt(x)+1/(sqrt(x)) , then (dy)/(dx) \ at \ x=1 is a. 1 b. 1/2 c. 1/(sqrt(2)) d. 0

If y={x+sqrt(x^2+a^2)}^n , then prove that (dy)/(dx)=(n y)/(sqrt(x^2+a^2)) .

If y=(x+sqrt(x^2+a^2))^n ,t h e n(dy)/(dx) is (a) (n y)/(sqrt(x^2+a^2)) (b) -(n y)/(sqrt(x^2+a^2)) (c) (n x)/(sqrt(x^2+a^2)) (d) -(n x)/(sqrt(x^2+a^2))

If y=(x+sqrt(x^2+a^2))^n ,t h e n(dy)/(dx) is (n y)/(sqrt(x^2+a^2)) (b) -(n y)/(sqrt(x^2+a^2)) (n x)/(sqrt(x^2+a^2)) (d) -(n x)/(sqrt(x^2+a^2))

If y=(x+sqrt(x^2+a^2))^n ,t h e n(dy)/(dx) is (n y)/(sqrt(x^2+a^2)) (b) -(n y)/(sqrt(x^2+a^2)) (n x)/(sqrt(x^2+a^2)) (d) -(n x)/(sqrt(x^2+a^2))

CENGAGE ENGLISH-CONIC SECTIONS-All Questions
  1. Let a circle be given by 2x(x-a)+y(2y-b)=0,(a!=0,b!=0) . Find the cond...

    Text Solution

    |

  2. Consider a family of circles passing through the points (3, 7) and (6,...

    Text Solution

    |

  3. Let xa n dy be real variables satisfying x^2+y^2+8x-10 y-40=0 . Let a=...

    Text Solution

    |

  4. A(1/(sqrt(2)),1/(sqrt(2))) is a point on the circle x^2+y^2=1 and B is...

    Text Solution

    |

  5. Tangent drawn from the point (a ,3) to the circle 2x^2+2y^2=25 will be...

    Text Solution

    |

  6. Consider the circle x^2+y^2-10x-6y+30=0. Let O be the centre of the ci...

    Text Solution

    |

  7. If the circle x^2+y^2+2a1x+c=0 lies completely inside the circle x^2+y...

    Text Solution

    |

  8. Let C,C1,C2 be circles of radii 5,3,2 respectively. C1 and C2, touch e...

    Text Solution

    |

  9. Let A B C be a triangle right-angled at Aa n dS be its circumcircle. L...

    Text Solution

    |

  10. ABCD is a rectangle. A circle passing through vertex C touches the sid...

    Text Solution

    |

  11. If the length of the common chord of two circles x^2+y^2+8x+1=0 and x^...

    Text Solution

    |

  12. The equation of circle of minimum radius which contacts the three circ...

    Text Solution

    |

  13. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  14. Tangents are drawn from the point (17, 7) to the circle x^2+y^2=169, S...

    Text Solution

    |

  15. The equation of the line passing through the points of intersection of...

    Text Solution

    |

  16. The locus of the mid-point of the chord of contact of tangents drawn f...

    Text Solution

    |

  17. If the tangent at the point P(2,4) to the parabola y^2=8x meets the pa...

    Text Solution

    |

  18. Find the locus of the midpoints of the portion of the normal to the ...

    Text Solution

    |

  19. An equilateral triangle is inscribed in the parabola y^2=4a x , such t...

    Text Solution

    |

  20. M is the foot of the perpendicular from a point P on a parabola y^2=4a...

    Text Solution

    |