Home
Class 11
MATHS
If the tangent drawn at point (t^2,2t) o...

If the tangent drawn at point `(t^2,2t)` on the parabola `y^2=4x` is the same as the normal drawn at point `(sqrt(5)costheta,2sintheta)` on the ellipse `4x^2+5y^2=20,` then `theta=cos^(-1)(-1/(sqrt(5)))` (b) `theta=cos^(-1)(1/(sqrt(5)))` `t=-2/(sqrt(5))` (d) `t=-1/(sqrt(5))`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CENGAGE ENGLISH|Exercise All Questions|886 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =

If cos (sin^(-1)(2/sqrt(5)) + cos^(-1)x) = 0, then x is equal to A) 1/sqrt(5) B) (-2/sqrt(5)) C) (2/sqrt(5)) D) 1

Let T = (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7)) +(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)+2) then-

If y = cos^(-1) ((1)/( sqrt(1+t^(2)))), x = sin^(-1) (sqrt((t^(2))/(1 + t^(2)))), "find " (dy)/(dx)

If veca=(3,1) and vecb=(1,2) represent the sides of a parallelogram then the angle theta between the diagonals of the paralelogram is given by (A) theta=cos^-1(1/sqrt(5)) (B) theta=cos^-1(2/sqrt(5)) (C) theta=cos^-1 (1/(2sqrt(5))) (D) theta = pi/2

The sum of all the solution(s) of the equation sin^(-1)2x=cos^(-1)x is 0 (2) 2/(sqrt(5)) (3) 1/(sqrt(5)) (4) (-1)/(sqrt(5))

If sin2theta=cos3theta"and"theta is an acute angle, then sintheta equal (a) (sqrt(5)-1)/4 (b) -((sqrt(5)-1)/4) (c) (sqrt(5)+1)/4 (d) (-sqrt(5)-1)/4

The eccentricity of the ellipse 4x^2+9y^2=36 is a. 1/(2sqrt(3)) b. 1/(sqrt(3)) c. (sqrt(5))/3 d. (sqrt(5))/6

The eccentricity of the ellipse 4x^2+9y^2=36 is a. 1/(2sqrt(3)) b. 1/(sqrt(3)) c. (sqrt(5))/3 d. (sqrt(5))/6

If sin^(-1)x+cot^(-1)(1/2)=pi/2,\ t h e n\ x is 0 b. 1/(sqrt(5)) c. 2/(sqrt(5)) d. (sqrt(3))/2

CENGAGE ENGLISH-CONIC SECTIONS-All Questions
  1. Two concentric ellipses are such that the foci of one are on the other...

    Text Solution

    |

  2. If hyperbola (x^2)/(b^2)-(y^2)/(a^2)=1 passes through the focus of ell...

    Text Solution

    |

  3. If the tangent drawn at point (t^2,2t) on the parabola y^2=4x is the s...

    Text Solution

    |

  4. If the foci of the ellipse (x^2)/(16)+(y^2)/(b^2)=1 and the hyperbola ...

    Text Solution

    |

  5. Statement 1 : Any chord of the conic x^2+y^2+x y=1 through (0, 0) is b...

    Text Solution

    |

  6. Find the coordinates of the foci, the eocentricity, the latus rectum, ...

    Text Solution

    |

  7. Statement 1 : If there is exactly one point on the line 3x+4y+5sqrt...

    Text Solution

    |

  8. If the latus rectum of a hyperbola forms an equilateral triangle with ...

    Text Solution

    |

  9. Statement 1 : For the ellipse (x^2)/5+(y^2)/3=1 , the product of the p...

    Text Solution

    |

  10. If the latus rectum subtends a right angle at the center of the hyp...

    Text Solution

    |

  11. Statement 1 : The locus of the center of a variable circle touching...

    Text Solution

    |

  12. If P Q is a double ordinate of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1...

    Text Solution

    |

  13. Statement 1 : A triangle A B C right-angled at A moves so that its per...

    Text Solution

    |

  14. Find the eccentricity of the hyperbola given by equations x=(e^t+e^(-t...

    Text Solution

    |

  15. A ray emanating from the point (5, 0) is INCIDENT on the hyperbola 9x^...

    Text Solution

    |

  16. Statement 1 : If the line x+y=3 is a tangent to an ellipse with focie ...

    Text Solution

    |

  17. Normal is drawn at one of the extremities of the latus rectum of the ...

    Text Solution

    |

  18. Statement 1 : The area of the ellipse 2x^2+3y^2=6 is more than the are...

    Text Solution

    |

  19. An ellipse and a hyperbola are confocal (have the same focus) and the ...

    Text Solution

    |

  20. The point of intersection of the tangents at the point P on the ellips...

    Text Solution

    |