Home
Class 12
MATHS
Number of point where function f(x) defi...

Number of point where function f(x) defined as `f:[0,2pi] rarrR,f(x)={{:(3-|cosx-(1)/(sqrt2)|",",|sinx|lt(1)/(sqrt2)),(2+|cosx+(1)/(sqrt2)|",",|sinx|ge(1)/(sqrt2)):}` is non differentiable is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain of the function f(x) defined by f(x)=sqrt(4-x)+1/(sqrt(x^2-1)) .

Find the domain of the function f(x) defined by f(x)=sqrt(4-x)+1/(sqrt(x^2-1)) .

Find the range of f(x)=(log)_2((sinx-cosx+3sqrt(2))/(sqrt(2)))

Find the range of f(x)=(log)_2((sinx-cosx+3sqrt(2))/(sqrt(2)))

cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=(x)/(2), x in (0,(pi)/(4))

The function f(x)=sqrt(3)cosx+sinx has an amplitude of

if: f(x)=(sinx)/(sqrt(1+tan^2x))-(cosx)/(sqrt(1+cot^2x)), then find the range of f(x)

If int(sinx)/(sin(x-(pi)/(4)))dx=Af(x)+(1)/(sqrt2)log[|sinx-cosx|]+c, then

The derivative of f(x)=cos^(-1)((1)/(sqrt3)(2cosx-3sinx))+{sin^(-1)((1)/(sqrt3)(2cosx+3sinx))} w.r.t. sqrt(1+x^(2)) at x=(1)/(sqrt3) is.........

Let a , b in R,(a in 0) . If the funtion f defined as f(x)={{:(,(2x^(2))/(a),0 le x lt 1),(,a,1 le x lt sqrt2),(,(2b^(2)-4b)/(x^(3)),sqrt2lt x lt oo):} is a continous in [0,oo) . Then, (a,b)=