Home
Class 12
MATHS
If f(x)=(log)x(lnx),t h e nf^(prime)(x) ...

If `f(x)=(log)_x(lnx),t h e nf^(prime)(x)` at `x=e` is equal to `1/e` (b) e (c) 1 (d) zero

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(log)_x(log x),t h e nf^(prime)(x) at x=e is equal to (a) 1/e (b) e (c) 1 (d) zero

If f(x)=(log)_(x^2)(logx) , then f^(prime)(x) at x=e is (a) 0 (b) 1 (c) 1/e (d) 1/2e

If f(x)=(log)_(x^2)(logx), then f^(prime)(x) at x=e is 0 (b) 1 (c) 1/e (d) 1/2e

If f(x)=(log)_(x^2)(logx), then f^(prime)(x) at x=e is 0 (b) 1 (c) 1/e (d) 1/2e

If f(x)=|x^2-5x+6|,t h e nf^(prime)(x)e q u a l s

If f(x)=log_x(lnx) then f'(x) at x=e is

If f(x)=cosx-int_0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to a) -cosx (b) -sinx c) int_0^x(x-t)f(t)dt (d) 0

If f(x)=log((1+x)/(1-x))a n dt h e nf((2x)/(1+x^2)) is equal to {f(x)}^2 (b) {f(x)}^3 (c) 2 f(x) (d) 3f(x)

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

The minimum value of x\ (log)_e x is equal to e (b) 1//e (c) -1//e (d) 2e (e) e