Home
Class 12
MATHS
If y=(x^2)/2+1/2xsqrt(x^2+1)+1/2(log)esq...

If `y=(x^2)/2+1/2xsqrt(x^2+1)+1/2(log)_esqrt(x+sqrt(x^2+1))` , prove that `2y=x y^(prime)+(log)_e y^(prime),w h e r ey '` denotes the derivative w.r.t `xdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

"If "y=(x^(2))/(2)+(1)/(2)xsqrt(x^(2)+1)+log_(e)sqrt(x+sqrt(x^(2)+1)), then

If y sqrt(x^(2)+1)= log (sqrt(x^(2)+1)-x) , prove that (x^(2)+1)(dy)/(dx) +xy+1=0 .

y=[log(x+sqrt(x^2+1))]^2 then prove that (x^2+1)y_2+x y_1=2

If y=log(sqrt(x)+sqrt(1/x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If tan^(-1) (y/x) = log sqrt(x^(2) + y^(2)) , prove that dy/dx = (x+y)/(x-y)

"If "y^(1//m)=(x+sqrt(1+x^(2)))," then "(1+x^(2))y_(2)+xy_(1) is (where y_(r) represents the rth derivative of y w.r.t. x)

"If "y^(1//m)=(x+sqrt(1+x^(2)))," then "(1+x^(2))y_(2)+xy_(1) is (where y_(r) represents the rth derivative of y w.r.t. x)

Draw the graph of y=log_(e)(x+sqrt(x^(2)+1))

If y= 2^((1)/(log_(x)4)) then prove that x=y^(2) .

If tan^(-1)(Y/X) = log (sqrt(X^2+Y^2)) , prove that (dy/dx) = ((X+Y)/(X-Y))