Home
Class 12
MATHS
d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^...

`d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]=` `1/(sqrt(1-x^2))-1/(2sqrt(x-x^2))` `(-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2))` `1/(sqrt(1-x^2))+1/(2sqrt(x-x^2))` `1/(sqrt(1-x^2))` `0` b. `1//4` c. `-1//4` d. none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

int(sqrt(1-x^(2))+sqrt(1+x^(2)))/(sqrt(1-x^(4)))dx=

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

d/(dx)[tan^(-1)((sqrt(x)(3-x))/(1-3x))]= (a) 1/(2(1+x)sqrt(x)) (b) 3/((1+x)sqrt(x)) 2/((1+x)sqrt(x)) (d) 3/(2(1+x)sqrt(x))

Prove that tan^(-1)[(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))]=pi/4+1/2cos^(-1)x^2

d/(dx)[tan^(-1)((sqrt(x)(3-x))/(1-3x))] is (a) 1/(2(1+x)sqrt(x)) (b) 3/((1+x)sqrt(x)) (c) 2/((1+x)sqrt(x)) (d) 3/(2(1+x)sqrt(x))

Differentiate cos^(-1)(2xsqrt(1-x^2)) -1/(sqrt(2))

lim_(x->1/sqrt2 ^+) cos^- 1(2xsqrt(1-x^2))/((x-1/sqrt2))-lim_(x->1/sqrt2^-) cos^- 1(2xsqrt(1-x^2))/((x-1/sqrt2))

int(dx)/((1+sqrt(x))sqrt((x-x^2))) is equal to (a) (1+sqrt(x))/((1-x)^2)+c (b) (1+sqrt(x))/((1+x)^2)+c (c) (1-sqrt(x))/((1-x)^2)+c (d) (2(sqrt(x)-1))/(sqrt((1-x)))+c