Home
Class 12
MATHS
f(x)=sin^2x+cos^4x+2 and g(x)=cos(cosx)+...

`f(x)=sin^2x+cos^4x+2` and `g(x)=cos(cosx)+cos(sinx)` Also let period f(x) and g(x) be `T_1` and `T_2` respectively then

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=cot^(2)x*cos^(2)x, g(x)=cot^(2)x-cos^(2)x

Let f(x) = |sinx| + |cosx|, g(x) = cos(cosx) + cos(sinx) ,h(x)={-x/2}+sinpix , where { } representsfractional function, then the period of

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

Let f(x)=cos10x+cos8x+3cos4x+3cos2x and g(x)=8cosxcos^3(3x) then for all x we have

Let f(x) and g(x) be differentiable functions such that f(x)+ int_(0)^(x) g(t)dt= sin x(cos x- sin x) and (f'(x))^(2)+(g(x))^(2) = 1,"then" f(x) and g (x) respectively , can be

If f(x)=sinx+cosx and g(x)=x^2-1 , then g(f (x)) is invertible in the domain .

If f(x)=sinx+cosx and g(x)=x^2-1 , then g(f (x)) is invertible in the domain .

If f(x) =4x^2 and g(x) =f(sin x)+f(cos x), then g (23^(@)) is

f(x)=(cos^2x)/(1+cosx+cos^2x) and g(x)=ktanx+(1-k)sinx-x , where k in R, g'(x)=

If f(x)=sinx, g(x)=cosx and h(x)=cos(cosx), then the integral I=int f(g(x)).f(x).h(x)dx simplifies to -lambda sin^(2)(cosx)+C (where, C is the constant of integration). The value of lambda is equal to