Home
Class 12
MATHS
If 'f' is an increasing function from Rv...

If `'f'` is an increasing function from `RvecR` such that `f^(prime)prime(x)>0a n df^(-1)` exists then `(d^2(f^(-1)(x)))/(dx^2)` is `<0` b. `>0` c. `=0` d. cannot be determined

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If 'f' is an increasing function from RvecR such that f^(x)>0a n df^(-1) exists then (d^2(f^(-1)(x)))/(dx^2) is 0 c. =0 d. cannot be determined

If is a real valued function defined by f(x)=x^2+4x+3, then find f^(prime)(1)a n df^(prime)(3)dot

Let f: RvecR be such that f(a)=1,f^(prime)(a)=2. Then (lim)_(xvec0)((f^2(a+x))/(f(a)))^(1//x) is a. e^2 b. e^4 c. e^(-4) d. 1//e

Let f: RvecR be a one-one onto differentiable function, such that f(2)=1a n df^(prime)(2)=3. The find the value of ((d/(dx)(f^(-1)(x))))_(x=1)

Let f: RvecR be a one-one onto differentiable function, such that f(2)=1a n df^(prime)(2)=3. The find the value of ((d/(dx)(f^(-1)(x))))_(x=1)

Let f(x) be the fourth degree polynomial such that f^(prime)(0)-6,f(0)=2a n d(lim)_(xvec1)(f(x))/((x-1)^2)=1 The value of f(2) is 3 b. 1 c. 0 d. 2

Using first principles, prove that d/(dx){1/(f(x))}=-(f^(prime)(x))/({f(x)}^2)

If f^(prime)(x)=3x^2-2/(x^3) and f(1)=0 , find f(x) .

If f(x)=|logx|,xgt0 ,find f^(prime)(1/e)a n df^(prime)(e)

If f(0)=f(1)=0 , f^(prime)(1)=f^(prime)(0)=2 and y=f(e^x)e^(f(x)) , write the value of (dy)/(dx) at x=0 .