Home
Class 12
MATHS
If x=(1+t)/(t^(3)),y=(3)/(2t^(2))+(2)/(t...

If `x=(1+t)/(t^(3)),y=(3)/(2t^(2))+(2)/(t)` satisfy `f(x)((dy)/(dx))^(3)=1+(dy)/(dx),` then f(x) equals

Promotional Banner

Similar Questions

Explore conceptually related problems

if x=(1+t)/t^3 ,y=3/(2t^2)+2/t satisfies f(x)*{(dy)/(dx)}^3=1+(dy)/(dx) then f(x) is:

If x=(1+t)/(t^3),y=3/(2t^2)+2/t , then x((dy)/(dx))^3-(dy)/(dx) is equal to (a) 0 (b) -1 (c) 1 (d) 2

If x=(3at)/ (1+t^3), y=(3at^2)/(1+t^3), then dy/dx is

"If "x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then find "(dy)/(dx)" at "t=2.

If f(x)=t^(2)+(3)/(2)t , then f(q-1)=

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .

If f'(x)=sin(log x)and y=f((2x+3)/(3-2x)), then dy/dx equals

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=