Home
Class 12
MATHS
The function f(x)=cos^(-1)((2[|sinx|+|co...

The function `f(x)=cos^(-1)((2[|sinx|+|cosx|])/(sin^2x+2sinx+11/4))` is defined if x belongs to (where [.] represents the greatest integer function)

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

f(x)=[sinx] where [.] denotest the greatest integer function is continuous at:

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

Find x satisfying [tan^(-1)x]+[cos^(-1)x]=2, where [] represents the greatest integer function.

Discuss continuity of f(x) =[sin x] -[cos x] at x=pi//2, where [.] represent the greatest integer function .

Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the greatest integer function) is

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

f(x)=sin[x]+[sin x],0 < x < pi/2 (where [.] represents the greatest integer function), can also be represented as

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is