Home
Class 12
MATHS
The domain of the function f(x)=log(e){s...

The domain of the function `f(x)=log_(e){sgn(9-x^(2))}+sqrt([x]^(3)-4[x])` (where `[.]` represents the greatest integer function is

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

The domain of the function f(x)=log_(3)log_(1//3)(x^(2)+10x+25)+(1)/([x]+5) (where [.] denotes the greatest integer function) is

The range of the function defined as f(x) = log_(3)((1)/(sqrt([cosx] - [sin x]))) , where [ ] represents the greatest integer function, is

The domain of the function f(x)=log_(10)(sqrt(x-4)+sqrt(6-x)) is

Let f(x) = [sin ^(4)x] then ( where [.] represents the greatest integer function ).

The domain of the function f(x)=4-sqrt(x^(2)-9) is

Let [.] represent the greatest integer function and f (x)=[tan^2 x] then :

Find the domain of f(x)=sqrt(([x]-1))+sqrt((4-[x])) (where [ ] represents the greatest integer function).

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.