Home
Class 12
MATHS
If f(x) is an invertible function and g(...

If `f(x)` is an invertible function and `g(x)=2f(x)+5,` then the value of `g^(-1)(x)i s` (a)`2f^(-1)(x)-5` (b) `1/(2f^(-1)(x)+5)` (c)`1/2f^(-1)(x)+5` (d) `f^(-1)((x-5)/2)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is an invertible function and g(x)=2f(x)+5, then the value of g^(-1)(x)i s (a) 2f^(-1)(x)-5 (b) 1/(2f^(-1)(x)+5) 1/2f^(-1)(x)+5 (d) f^(-1)((x-5)/2)

If f(x) is an invertible function and g(x)=2f(x)+5, then the value of g^(-1)(x)i s (a) 2f^(-1)(x)-5 (b) 1/(2f^(-1)(x)+5) 1/2f^(-1)(x)+5 (d) f^(-1)((x-5)/2)

If 'f' is an invertible function, defined as f(x)=(3x-4)/5, write f^(-1)(x)

If the function f(x)=x^3+e^(x/2) and g(x)=f ^(−1)(x) , then the value of g ′ (1) is

If function f(x)=x^(2)+e^(x//2) " and " g(x)=f^(-1)(x) , then the value of g'(1) is

If f(x) = x^(2) + x + 5 and g(x) = sqrt(x) , then what is the value of (g(4))/(f(1)) ?

If the functions f(x)=x^(3)+e^(x//2) " and " g(x)=f^(-1)(x) , the value of g'(1) is ………… .

If f(x)=(2x)/(5)+(7)/(3), f^(-1)(x)=

If g is the inverse of a function f and f'(x) = 1/(1+x^(5)) , then g'(x) is equal to

If g is the inverse of a function f and f^'(x)=1/(1+x^5) then g(x) is equal to (1) 1""+x^5 (2) 5x^4 (3) 1/(1+{g(x)}^5) (4) 1+{g(x)}^5