Home
Class 12
MATHS
Suppose |[f'(x),f(x)],[f''(x),f'(x)]|=0 ...

Suppose `|[f'(x),f(x)],[f''(x),f'(x)]|=0` is continuously differentiable function with `f^(prime)(x)!=0` and satisfies `f(0)=1` and `f'(0)=2` then `(lim)_(x->0)(f(x)-1)/x` is `1//2` b. `1` c. `2` d. `0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose |(f'(x),f(x)),(f''(x),f'(x))|=0 where f(x) is continuously differentiable function with f'(x)ne0 and satisfies f(0) = 1 and f'(0) = 2 then lim_(xrarr0) (f(x)-1)/(x) is

Suppose |(f'(x),f(x)),(f''(x),f'(x))|=0 where f(x) is continuous differentiable function with f'(x) !=0 and satisfies f(0)=1 and f'(0)=2 , then f(x)=e^(lambda x)+k , then lambda+k is equal to ..........

If f:RR-> RR is a differentiable function such that f(x) > 2f(x) for all x in RR and f(0)=1, then

If f(x) is a differentiable function satisfying |f'(x)|le4AA x in [0, 4] and f(0)=0 , then

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

If f(x) is a differentiable real valued function satisfying f''(x)-3f'(x) gt 3 AA x ge 0 and f'(0)=-1, then f(x)+x AA x gt 0 is

Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA , x,y in R, y!=0 and f(1)!=0 , f'(1)=3 then

A continuous real function f satisfies f(2x)=3f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

If f(x) is continuous on [0,2] , differentiable in (0,2) ,f(0)=2, f(2)=8 and f'(x) le 3 for all x in (0,2) , then find the value of f(1) .