Home
Class 12
MATHS
Let f(x)=(g(x))/x when x!=0 and f(0)=0....

Let `f(x)=(g(x))/x ` when `x!=0` and `f(0)=0.` If `g(0)=g^(prime)(0)=0`and
`g^`"`(0)=17` then `f^(prime)(0)=` a).`3/4` b). `-1/2` c). `17/3` d). `17/2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(g(x))/x w h e nx!=0 and f(0)=0. If g(0)=g^(prime)(0)=0a n dg^(0)=17 then f'(0)= 3//4 b. -1//2 c. 17//3 d. 17//2

Let f(x)={x+1,x >0, 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

If f(x)=e^(x)g(x),g(0)=2,g'(0)=1, then f'(0) is

Let f(x)={x+1,x >0 \n 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

Let g(x)=f(x)+f(1-x) and f''(x)<0 , when x in (0,1) . Then f(x) is

If f^(prime)(x)=asinx+bcosx and f^(prime)(0)=4,f(0)=3,f(pi/2)=5 . Find f(x).

If f(x)=sgn(x)={(|x|)/x,x!=0, 0, x=0 and g(x)=f(f(x)), then at x=0,g(x) is

If f^(prime)(x)=asinx+bcosx and f^(prime)(0)=4,\ \ f(0)=3,\ \ f(pi/2)=5 , find f(x) .

Let g(x)=2f(x/2)+f(1-x) and f^(primeprime)(x)<0 in 0<=x<=1 then g(x)

Let f(x) be differentiable for real x such that f^(prime)(x)>0on(-oo,-4), f^(prime)(x) 0on(6,oo), If g(x)=f(10-2x), then the value of g^(prime)(2) is a. 1 b. 2 c. 0 d. 4