Home
Class 12
MATHS
If F(x)a n dG(x) are even and odd extens...

If `F(x)a n dG(x)` are even and odd extensions of the function `f(x)=x|x|+"sin"|x+x e^x ,w h e r ex in (0,1),g(x)=cos|x|+x^2-x ,w h e r ex in (0,1)` respectively to the interval `(-1, 0)t h e nF(x)+G(x)` in (-1,0) is (a). `sin x+cos x+x e^(-x)` `(b)(sin x+cos x+x e^(-x))` `(c)(sin x+cos x+x+x e^(-x))` `(d)(sin x+cos x+x^2+x e^(-x))`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

(2+sin 2x)/(1+cos 2x) e^(x)

int sin x*cos x*e^(sin x)*dx

int(e^(x)+cos x)/(e^(x) +sin x) dx

Writhe the range of the function f(x)=cos[x],\ w h e r e-\ pi/2

int(e^(x)sin x+cos x+x sin x)/(sinx)dx

If f(x)=sin|x|-e^(|x|) then at x=0,f(x) is

If the function f(x) = (x(e^(sinx) -1))/( 1 - cos x ) is continuous at x =0 then f(0)=

(i) int (e^(x) .(1-x))/(x^(2))dx (ii) int ((1+sin x)/(1+cos x))e^(x) dx

Discuss monotonocity of f(x)=x/(sinx)a n d g(x)=x/(tanx),w h e r e

The function f(x)=x^x decreases on the interval (a) (0,\ e) (b) (0,\ 1) (c) (0,\ 1//e) (d) (1//e ,\ e)