Home
Class 12
MATHS
The number of points of discontinuity of...

The number of points of discontinuity of `f(x)=[2x]^(2)-{2x}^(2)` (where [ ] denotes the greatest integer function and { } is fractional part of x) in the interval `(-2,2)`, is

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

f(x)=[x^(2)]-{x}^(2), where [.] and {.} denote the greatest integer function and the fractional part function , respectively , is

Number of points of discontinuity of f(x)={x/5}+[x/2] in x in [0,100] is/are (where [-] denotes greatest integer function and {:} denotes fractional part function)

The range of f(x)=(2+x-[x])/(1-x+[x]) .where [ ] denotes the greatest integer function is

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Solve 1/[x]+1/([2x])= {x}+1/3 where [.] denotes the greatest integers function and{.} denotes fractional part function.