Home
Class 12
MATHS
Consider two function y=f(x) and y=g(x) ...

Consider two function `y=f(x) and y=g(x)` defined as
`f(x)={{:(ax^(2)+b,,0lexle1),(bx+2b,,1ltxle3),((a-1)x+2c-3,,3ltxle4):}`
`and" "g(x)={{:(cx+d,,0lexle2),(ax+3-c,,2ltxlt3),(x^(2)+b+1,,3gexle4):}`
`underset(xrarr2)(lim)(f(x))/(|g(x)|+1)` exists and f is differentiable at x = 1. The value of limit will be

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider two function y=f(x) and y=g(x) defined as f(x)={{:(ax^(2)+b,,0lexle1),(bx+2b,,1ltxle3),((a-1)x+2c-3,,3ltxle4):} and" "g(x)={{:(cx+d,,0lexle2),(ax+3-c,,2ltxlt3),(x^(2)+b+1,,3gexle4):} lim_(xrarr2) (f(x))/(|g(x)|+1) exists and f is differentiable at x = 1. The value of limit will be

If f(x)={{:(x",",0lexle1),(2-e^(x-1)",",1ltxle2),(x-e",",2ltxle3):} and g'(x)=f(x), x in [1,3] , then

If f(x)={{:(5x-4",",0ltxle1),(4x^(2)+3ax",",1ltxlt2):}

Let f(x)={{:(3^x","-1lexle1),(4-x","1ltxle4):} then

Consider two functions, f(x) and g(x) defined as under: f(x)={1+x^3,x < 0 and g(x) ={(x-1)^(1/3) (x+1)^(1/2), x < 0. Evaluate g(f(x)).

f(x)={(ae^x+be^(-x),-1lexle1),(cx^2,1lexle3),(2ax+c,3lexle4):} ,f'(0)+f'(2)=e then the value of a is:

If f(x) is defined as f(x)={{:(x,0lexlt(1)/(2)),(0,x=(1)/(2)),(1-x,(1)/(2)ltxle1):} then evaluate : lim_(xrarr(1)/(2)) f(x)

Show that the function f defined as follows f(x)={(3x-2 ,, 0ltxle1),(2x^2-x ,, 1ltxle2),(5x-4 ,, xgt2):} is continuous at x=2 but not differentiable.

Find the value of 'a' and 'b' lim_(x to 2) and lim_(x to 4) exists where f(x){{:(x^(2)+ax+b,0lexlt2),(3x+2,2lexle4),(2ax+5b,4ltxle8):}

Let f(x)={:{(x^(2)+4x",",-3lexle0),(-sinx",",0ltxle(pi)/(2)),(-cosx-1",",(pi)/(2)ltxlepi):} then