Home
Class 12
MATHS
If a variable takes the discrete values ...

If a variable takes the discrete values `alpha+4`,
`alpha -(7)/(2), alpha-(5)/(2), alpha-2,alpha-3,alpha+(1)/(2), alpha-(1)/(2), alpha+5(alpha gt 0)`, then the median is

A

`alpha-(5)/(4)`

B

`alpha-(1)/(2)`

C

`alpha-2`

D

`alpha+(5)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
A

Arrange the data as follows :
`alpha-(7)/(2), alpha-3, alpha-(5)/(2),alpha-2, alpha-(1)/(2),alpha+(1)/(2),alpha+4,alpha+5`
Median `=(1)/(2)` [value of 4th item+value of 5th item]
`therefore " Median"=(alpha-2+alpha-(1)/(2))/(2)=(2alpha-(5)/(2))/(2)=alpha-(5)/(4)`
Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    CENGAGE ENGLISH|Exercise Exercise 11.1|5 Videos
  • STATISTICS

    CENGAGE ENGLISH|Exercise Exercise 11.2|6 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • STRAIGHT LINE

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|8 Videos

Similar Questions

Explore conceptually related problems

The value of (sin5alpha-sin3alpha)/(cos5alpha+2cos4alpha+cos3alpha) is

cos alpha cos 2 alpha cos 4 alpha cos 8 alpha = (1)/(16), if alpha = 24 ^(@)

Prove that |1alphaalpha^2alphaalpha^2 1alpha^2 1alpha|=-(1-alpha^3)^2dot

If alpha is a non-real cube root of -2 , then the value of |(1,2 alpha,1),(alpha^(2),1,3 alpha^(2)),(2,2 alpha,1)| , is

If alpha_r=(cos2rpi+isin2rpi)^(1/10) , then |(alpha_1, alpha_2, alpha_4),(alpha_2, alpha_3, alpha_5),(alpha_3, alpha_4, alpha_6)|= (A) alpha_5 (B) alpha_7 (C) 0 (D) none of these

If 0 < alpha < pi/6 and sin alpha + cos alpha =sqrt(7 )/2, then tan alpha/2 is equal to

If the roots of equation x^(3) + ax^(2) + b = 0 are alpha _(1), alpha_(2), and alpha_(3) (a , b ne 0) . Then find the equation whose roots are (alpha_(1)alpha_(2)+alpha_(2)alpha_(3))/(alpha_(1)alpha_(2)alpha_(3)), (alpha_(2)alpha_(3)+alpha_(3)alpha_(1))/(alpha_(1)alpha_(2)alpha_(3)), (alpha_(1)alpha_(3)+alpha_(1)alpha_(2))/(alpha_(1)alpha_(2)alpha_(3)) .

Find the coefficient of alpha^(6) in the product (1+alpha+alpha^(2))(1+alpha+alpha^(2))(1+alpha+alpha^(2)+alpha^(3)) (1+alpha)(1+alpha)(1+alpha) .

(cos alpha + 2 cos 3 alpha + cos 5 alpha )/(cos 3 alpha + 2 cos 5 alpha + cos 7 alpha ) = cos 3 alpha sec 5 alpha .

Let alpha be a root of the equation x ^(2) - x+1=0, and the matrix A=[{:(1,1,1),(1, alpha , alpha ^(2)), (1, alpha ^(2), alpha ^(4)):}] and matrix B= [{:(1,-1, -1),(1, alpha, - alpha ^(2)),(-1, -alpha ^(2), - alpha ^(4)):}] then the vlaue of |AB| is: