Home
Class 12
MATHS
If sum(i=1)^(9) (x(i)-5) " and" sum(i=1)...

If `sum_(i=1)^(9) (x_(i)-5) " and" sum__(i=1)^(9) (x_(i)-5)^(2)=45`, then the standard deviation of the 9 items `x_(1),x_(2),..,x_(9)` is

A

3

B

9

C

4

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find the standard deviation of the nine items \( x_1, x_2, \ldots, x_9 \), we can follow these steps: ### Step 1: Define the variables Let \( y_i = x_i - 5 \). This transformation centers the data around zero. ### Step 2: Write down the given information We are given: \[ \sum_{i=1}^{9} y_i = 9 \] \[ \sum_{i=1}^{9} y_i^2 = 45 \] ### Step 3: Calculate the variance The formula for variance \( \sigma^2 \) is given by: \[ \sigma^2 = \frac{\sum_{i=1}^{n} y_i^2}{n} - \left(\frac{\sum_{i=1}^{n} y_i}{n}\right)^2 \] where \( n \) is the number of items, which in this case is 9. ### Step 4: Substitute the values into the variance formula Substituting the known values: \[ \sigma^2 = \frac{45}{9} - \left(\frac{9}{9}\right)^2 \] ### Step 5: Simplify the expression Calculating the first term: \[ \frac{45}{9} = 5 \] Calculating the second term: \[ \left(\frac{9}{9}\right)^2 = 1 \] Now substituting these values back into the variance formula: \[ \sigma^2 = 5 - 1 = 4 \] ### Step 6: Calculate the standard deviation The standard deviation \( \sigma \) is the square root of the variance: \[ \sigma = \sqrt{4} = 2 \] ### Final Answer The standard deviation of the nine items \( x_1, x_2, \ldots, x_9 \) is \( 2 \). ---

To find the standard deviation of the nine items \( x_1, x_2, \ldots, x_9 \), we can follow these steps: ### Step 1: Define the variables Let \( y_i = x_i - 5 \). This transformation centers the data around zero. ### Step 2: Write down the given information We are given: \[ ...
Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    CENGAGE ENGLISH|Exercise Exercises|39 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • STRAIGHT LINE

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|8 Videos

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(5) (x_(i) - 6) = 5 and sum_(i=1)^(5)(x_(i)-6)^(2) = 25 , then the standard deviation of observations

If sum_(i=1)^(18)(x_(i) - 8) = 9 and sum_(i=1)^(18)(x_(i) - 8)^(2) = 45 then find the standard deviation of x_(1), x_(2),….x_(18)

If x_(1), x_(2), "…......." x_(18) are observation such that sum_(j=1)^(18)(x_(j) -8) = 9 and sum_(j=1)^(18)(x_(j) -8)^(2) = 45 , then the standard deviation of these observations is

A data consists of n observations x_(1), x_(2), ..., x_(n). If Sigma_(i=1)^(n) (x_(i) + 1)^(2) = 9n and Sigma_(i=1)^(n) (x_(i) - 1)^(2) = 5n , then the standard deviation of this data is

If n= 10, sum_(i=1)^(10) x_(i) = 60 and sum_(i=1)^(10) x_(i)^(2) = 1000 then find s.d.

If sum_(i=1)^n(x_i+1)^2=9n and sum_(i=1)^n(x_i-1)^2=5n , then standard deviation of these 'n' observations (x_1) is: (1) 2sqrt(3) (2) sqrt(3) (3) sqrt(5) (4) 3sqrt(2)

If for a sample size of 10 , sum_(i=1)^(10)(x_i-5)^2=350 and sum_(i=1)^(10)(x_i-6)=20 , then the variance is

If sum_(i=1)^(15)x_(i)=45,A=sum_(i=1)^(15)(x_(i)-2)^(2) , B=sum_(i=1)^(15)(x_(i)-3)^(2) and C=sum_(i=1)^(15)(x_(i)-5)^(2) then Statement 1: min(A,B,C)=A Statement 2: The sum of squares of deviations is least when taken from man.

If sum_(i=1)^(7) i^(2)x_(i) = 1 and sum_(i=1)^(7)(i+1)^(2) x_(i) = 12 and sum_(i=1)^(7)(i+2)^(2)x_(i) = 123 then find the value of sum_(i=1)^(7)(i+3)^(2)x_(i)"____"

If sum_(i=1)^200 sin^-1 x_i=100pi, then sum _(i=1)^200 x_i^2 is equal to