A line makes angles `alpha,beta,gamma`and `delta` with the diagonals of a cube, then find the value of `cos^2alpha+cos^2beta+cos^2gamma+cos^2delta`.
A line makes angles `alpha,beta,gamma`and `delta` with the diagonals of a cube, then find the value of `cos^2alpha+cos^2beta+cos^2gamma+cos^2delta`.
A
`1/3`
B
`2/3`
C
`1`
D
`4/3`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem of finding the value of \( \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta \) where a line makes angles \( \alpha, \beta, \gamma, \) and \( \delta \) with the diagonals of a cube, we can follow these steps:
### Step 1: Identify the Diagonals of the Cube
A cube has four main diagonals. Let's denote them as:
- Diagonal AL
- Diagonal BM
- Diagonal CN
- Diagonal OP
### Step 2: Determine the Direction Cosines of the Diagonals
For a cube with side length \( a \), the direction cosines of the diagonals can be calculated. The direction cosines for each diagonal are:
- For diagonal OP: \( \left( \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) \)
- For diagonal AL: \( \left( -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) \)
- For diagonal BM: \( \left( \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) \)
- For diagonal CN: \( \left( \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}} \right) \)
### Step 3: Define the Direction Cosines of the Line
Let the direction cosines of the line be \( L, M, N \). The angles \( \alpha, \beta, \gamma, \delta \) are the angles made by the line with the diagonals.
### Step 4: Write the Cosine Relations
Using the direction cosines, we can express the cosines of the angles:
1. \( \cos \alpha = \frac{L + M + N}{\sqrt{3}} \)
2. \( \cos \beta = \frac{-L + M + N}{\sqrt{3}} \)
3. \( \cos \gamma = \frac{L - M + N}{\sqrt{3}} \)
4. \( \cos \delta = \frac{L + M - N}{\sqrt{3}} \)
### Step 5: Square Each Cosine
Now, we will square each of these equations:
1. \( \cos^2 \alpha = \frac{(L + M + N)^2}{3} \)
2. \( \cos^2 \beta = \frac{(-L + M + N)^2}{3} \)
3. \( \cos^2 \gamma = \frac{(L - M + N)^2}{3} \)
4. \( \cos^2 \delta = \frac{(L + M - N)^2}{3} \)
### Step 6: Add the Squared Cosines
Now, we sum these squared values:
\[
\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = \frac{1}{3} \left( (L + M + N)^2 + (-L + M + N)^2 + (L - M + N)^2 + (L + M - N)^2 \right)
\]
### Step 7: Simplify the Expression
Expanding each term:
1. \( (L + M + N)^2 = L^2 + M^2 + N^2 + 2LM + 2LN + 2MN \)
2. \( (-L + M + N)^2 = L^2 + M^2 + N^2 - 2LM + 2LN + 2MN \)
3. \( (L - M + N)^2 = L^2 + M^2 + N^2 - 2LM + 2LN - 2MN \)
4. \( (L + M - N)^2 = L^2 + M^2 + N^2 + 2LM - 2LN - 2MN \)
Adding these gives:
\[
4(L^2 + M^2 + N^2)
\]
### Step 8: Substitute the Value of \( L^2 + M^2 + N^2 \)
Since the direction cosines satisfy \( L^2 + M^2 + N^2 = 1 \):
\[
\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = \frac{4}{3} (L^2 + M^2 + N^2) = \frac{4}{3}
\]
### Conclusion
Thus, we have shown that:
\[
\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = \frac{4}{3}
\]
To solve the problem of finding the value of \( \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta \) where a line makes angles \( \alpha, \beta, \gamma, \) and \( \delta \) with the diagonals of a cube, we can follow these steps:
### Step 1: Identify the Diagonals of the Cube
A cube has four main diagonals. Let's denote them as:
- Diagonal AL
- Diagonal BM
- Diagonal CN
- Diagonal OP
...
Topper's Solved these Questions
THREE-DIMENSIONAL GEOMETRY
CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 3.1|12 VideosTHREE-DIMENSIONAL GEOMETRY
CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 3.2|15 VideosTHREE DIMENSIONAL GEOMETRY
CENGAGE ENGLISH|Exercise All Questions|294 VideosTRIGONOMETRIC EQUATIONS
CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
Similar Questions
Explore conceptually related problems
If a line makes angles alpha, beta, gamma, delta with the diafonals of a cubes then the value of 9(cos 2alpha + cos 2beta + cos2gamma + cos 2 delta )^(2) equals ….......
A line makes angles alpha,""""beta,""""gamma and delta with the diagonals of a cube, prove that cos^2alpha+cos^2beta+cos^2gamma+cos^2delta=4/3
A line makes angles alpha,beta,gammaa n ddelta with the diagonals of a cube. Show that cos^2alpha+cos^2beta+cos^2gamma+cos^2delta=4//3.
If line makes angle alpha, beta, gamma, delta with four diagonals of a cube, then the value of sin^2alpha+sin^2beta+sin^2gamma+sin^2delta is (A) 4/3 (B) 1 (C) 8/3 (D) 7/3
The value of cos^(2) alpha +cos^(2) beta +cos^(2) gamma is _____ .
If a line makes angle "alpha","beta\ and\ gamma" with the coordinate axes, find the value of "cos"2"alpha"+"cos"2"beta"+"cos"2"gamma"dot
If alpha, beta and gamma are angles made by the line with positive direction of X-axis, Y-axis and Z-axis respectively, then find the value of cos2alpha+cos2beta+cos2gamma .
A vector makes angles alpha,beta "and" gamma with the X,Y and Z axes respectively . Find the value of the expression (sin^(2)alpha+sin^(2)beta+sin^(2)gamma)/(cos^(2)alpha+cos^(2)beta+cos^(2)gamma)
If the normals at alpha, beta,gamma and delta on an ellipse are concurrent then the value of (sigma cos alpha)(sigma sec alpha) I
If sin alpha, sin beta, sin gamma are in AP and cos alpha, cos beta, cos gamma are in GP , then the value of (cos^(2)alpha+cos^(2)gamma+4 cos alpha cos gamma-2 sin alpha sin gamma-2)/(1-2 sin^(2)beta) , where beta != (pi)/(4) , is equal to