Home
Class 12
MATHS
If the straighat lines x=1+s,y=-3-lamdas...

If the straighat lines `x=1+s,y=-3-lamdas,z=1+lamdas and x=t/2,y=1+t,z=2-t` with parameters s and t respectively, are coplanar, then `lamda` equals (A) `-1/2` (B) `-1` (C) `-2` (D) `0`

Text Solution

AI Generated Solution

To determine the value of \( \lambda \) for which the given lines are coplanar, we can follow these steps: ### Step 1: Write the equations of the lines in parametric form The first line is given by: \[ x = 1 + s, \quad y = -3 - \lambda s, \quad z = 1 + \lambda s \] This can be rewritten in the form: ...
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 3.1|12 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 3.2|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

If the straight lines x=-1+s ,y=3-lambdas ,z=1+lambdasa n dx=t/2,y=1+t ,z=2-t , with paramerters sa n dt , respectivley, are coplanar, then find lambdadot

The points (3,-2,-1),(-1,1,2),(2,3,-4) and (4,5,lamda) are coplanar when lamda= (A) 0 (B) (-146)/17 (C) 1 (D) (-17)/9

If lamda_1 " and " lamda_2 are the wavelengths of the first members of the Lyman and paschen series respectively, then lamda_1/lamda_2 is equal to

If the lines (x-4)/1=(y-2)/1=(z-lamda)/3 and x/1=(y+2)/2=z/4 intersect each other, then lamda lies in the interval

If the parameter is eliminated from the equations x=t^(2)+1 and y=2t , then the relation between x and y is

If the following equations x+y-3z = 0, (1+lamda)x + (2+lamda) y - 8z = 0, x-(1+lamda)y + (2+lamda)z = 0 are consistent then the value of lamda is

If the straight lines (x+1)/2=(-y+1)/3=(z+1)/(-2)and (x-3)/1=(y-lamda)/2=z/3 intersect then the value of lamda is (A) -5/8 (B) -17/8 (C) -13/8 (D) -15/8

If the lines 6x-2=3y+1=2z-2 and (x-2)/(lamda)=(2y-5)/(-3),z=-2 are perpendicular then lamda=

Locus of the middle points of the line segment joining P(0, sqrt(1-t^2) + t) and Q(2t, sqrt(1-t^2) - t) cuts an intercept of length a on the line x+y=1 , then a = (A) 1/sqrt(2) (B) sqrt(2) (C) 2 (D) none of these

If the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(lamda) and (x-1)/(lamda)=(y-4)/(2)=(z-5)/(1) intersect then