Home
Class 12
MATHS
The reflection of the point veca in the ...

The reflection of the point `veca` in the plane `vecr.vecn=q` is (A) `veca+ (vecq-veca.vecn)/(|vecn|` (B) `veca+2((vecq-veca.vecn)/(|vecn|^2))vecn` (C) `veca+(2(vecq+veca.vecn))/(|vecn|)` (D) none of these

A

`veca+((vecq-veca.vecn))/(|vecn|)`

B

`veca+2(((vecq-veca.vecn))/(|vecn|^(2)))vecn`

C

`veca+(2(vecq-veca.vecn))/(|vecn|)vecn`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the reflection of the point represented by the vector \(\vec{a}\) in the plane defined by the equation \(\vec{r} \cdot \vec{n} = q\), we can follow these steps: ### Step 1: Understand the Plane Equation The equation of the plane is given by \(\vec{r} \cdot \vec{n} = q\), where \(\vec{n}\) is the normal vector to the plane and \(q\) is a scalar. **Hint:** The normal vector \(\vec{n}\) is perpendicular to the plane. ### Step 2: Find the Projection of \(\vec{a}\) onto the Normal Vector To find the projection of \(\vec{a}\) onto the normal vector \(\vec{n}\), we can use the formula: \[ \text{Projection of } \vec{a} \text{ onto } \vec{n} = \frac{\vec{a} \cdot \vec{n}}{|\vec{n}|^2} \vec{n} \] **Hint:** The dot product \(\vec{a} \cdot \vec{n}\) gives a scalar that helps in determining how far \(\vec{a}\) is from the plane along the direction of \(\vec{n}\). ### Step 3: Find the Point of Intersection The point of intersection \(P\) of the line through \(\vec{a}\) in the direction of \(\vec{n}\) with the plane can be found by solving: \[ \vec{a} + t\vec{n} \cdot \vec{n} = q \] This gives us: \[ t = \frac{q - \vec{a} \cdot \vec{n}}{|\vec{n}|^2} \] **Hint:** Substitute \(t\) back into the line equation to find the coordinates of the intersection point. ### Step 4: Calculate the Reflection Point The reflection point \(\vec{b}\) can be calculated using the formula: \[ \vec{b} = \vec{a} + 2\left(\frac{q - \vec{a} \cdot \vec{n}}{|\vec{n}|^2}\right) \vec{n} \] **Hint:** This formula accounts for moving from \(\vec{a}\) to the plane and then the same distance back, resulting in the reflection. ### Step 5: Identify the Correct Option Now, we can compare our derived formula with the given options: - The derived formula matches with option (B): \[ \vec{b} = \vec{a} + 2\left(\frac{q - \vec{a} \cdot \vec{n}}{|\vec{n}|^2}\right) \vec{n} \] Thus, the correct answer is **(B)**. ### Summary of Steps: 1. Understand the plane equation. 2. Find the projection of \(\vec{a}\) onto \(\vec{n}\). 3. Find the point of intersection with the plane. 4. Calculate the reflection point using the derived formula. 5. Identify the correct option based on the derived formula.

To find the reflection of the point represented by the vector \(\vec{a}\) in the plane defined by the equation \(\vec{r} \cdot \vec{n} = q\), we can follow these steps: ### Step 1: Understand the Plane Equation The equation of the plane is given by \(\vec{r} \cdot \vec{n} = q\), where \(\vec{n}\) is the normal vector to the plane and \(q\) is a scalar. **Hint:** The normal vector \(\vec{n}\) is perpendicular to the plane. ### Step 2: Find the Projection of \(\vec{a}\) onto the Normal Vector ...
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|17 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise REASONING TYPE|10 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise SUBJECTIVE TYPE|17 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

The projection of point P(vecp) on the plane vecr.vecn=q is (vecs) , then

Distance of point P(vecP) from the plane vecr.vecn=0 is

A straighat line vecr=veca+lamdavecb meets the plane vecr.vecn=p in the point whose position vector is (A) veca+((veca.hatn)/(vecb.hatn))vecb (B) veca+((p-veca.hatn)/(vecb.hatn))vecb (C) veca-((veca.hatn)/(vecb.hatn))vecb (D) none of these

The equation of the plane contaiing the lines vecr=veca_(1)+lamda vecb and vecr=veca_(2)+muvecb is

The equation of the line throgh the point veca parallel to the plane vecr.vecn =q and perpendicular to the line vecr=vecb+tvecc is (A) vecr=veca+lamda (vecnxxvecc) (B) (vecr-veca)xx(vecnxxvecc)=0 (C) vecr=vecb+lamda(vecnxxvecc) (D) none of these

Distance of the point P(vecp) from the line vecr=veca+lamdavecb is (a) |(veca-vecp)+(((vecp-veca).vecb)vecb)/(|vecb|^(2))| (b) |(vecb-vecp)+(((vecp-veca).vecb)vecb)/(|vecb|^(2))| (c) |(veca-vecp)+(((vecp-vecb).vecb)vecb)/(|vecb|^(2))| (d)none of these

If veca is parallel to vecb xx vecc, then (veca xx vecb) .(veca xx vecc) is equal to (a) |veca|^(2)(vecb.vecc) (b) |vecb|^(2)(veca .vecc) (c) |vecc|^(2)(veca.vecb) (d) none of these

The angle theta the line vecr=vecr+lamdavecb and the plane vecr.hatn=d is given by (A) sin^-1((vecb.hatn)/(|vecn||vecb|)) (B) cos^-1((vecb.hatn)/(|vecb|)) (C) sin^-1((veca.hatn)/(|veca|)) (D) cos^-1((veca.hatn)/(|veca|))

For two vectors veca and vecb,veca,vecb=|veca||vecb| then (A) veca||vecb (B) veca_|_vecb (C) veca=vecb (D) none of these

If veca,vecb and vecc are three mutually perpendicular unit vectors then (vecr.veca)veca+(vecr.vecb)vecb+(vecr.vecc)vecc= (A) ([veca vecb vecc]vecr)/2 (B) vecr (C) 2[veca vecb vecc] (D) none of these

CENGAGE ENGLISH-THREE-DIMENSIONAL GEOMETRY -SINGLE CORRECT ANSWER TYPE
  1. Shortest distance between the lines (x-1)/1=(y-1)/1=(z-1)/1a n d(x-2...

    Text Solution

    |

  2. Distance of point P(vecP) from the plane vecr.vecn=0 is

    Text Solution

    |

  3. The reflection of the point veca in the plane vecr.vecn=q is (A) veca+...

    Text Solution

    |

  4. The line vecr= veca + lambda vecb will not meet the plane vecr cdot ...

    Text Solution

    |

  5. If a line makes an angle of pi/4 with the positive direction of each...

    Text Solution

    |

  6. The ratio in which the plane vecr.(veci-2 vecj+3veck)=17 divides the l...

    Text Solution

    |

  7. the image of the point (-1,3,4) in the plane x-2y=0 a.(-(17)/(3),(19)/...

    Text Solution

    |

  8. The perpendicular distance between the line vecr = 2hati-2hatj+3hatk+l...

    Text Solution

    |

  9. Let L be the line of intersection of the planes 2x""+""3y""+""z""=""...

    Text Solution

    |

  10. The length of the perpendicular drawn from (1,2,3) to the line (x-6...

    Text Solution

    |

  11. If the angle theta between the line (x+1)/1=(y-1)/2=(z-2)/2 and the pl...

    Text Solution

    |

  12. The intersection of the spheres x^2+y^2+z^2+7x-2y-z=13a n dx^2+y^2+z...

    Text Solution

    |

  13. If a plane cuts off intercepts OA = a, OB = b, OC = c from the coordi...

    Text Solution

    |

  14. A line makes an angle theta with each of the x-and z-axes. If the an...

    Text Solution

    |

  15. The shortest distance from the plane 12 x+y+3z=327to the sphere x^2+y^...

    Text Solution

    |

  16. A tetrahedron has vertices O(0,0,0),A(1,2,1),B(2,1,3),a n dC(-1,1,2), ...

    Text Solution

    |

  17. The radius of the circle in which the sphere x^(I2)+y^2+z^2+2z-2y-4...

    Text Solution

    |

  18. The lines (x-2)/1=(y-3)/1=(z-4)/(-k) and (x-1)/k=(y-4)/2=(z-5)/1 are c...

    Text Solution

    |

  19. The point of intersection of the lines (x-5)/3=(y-7)/(-1)=(z+2)/1a ...

    Text Solution

    |

  20. A particle just clears a wall of height b at distance a and strikes...

    Text Solution

    |