Home
Class 12
MATHS
A tetrahedron has vertices O(0,0,0),A(1,...

A tetrahedron has vertices `O(0,0,0),A(1,2,1),B(2,1,3),a n dC(-1,1,2),` then angle between face `O A Ba n dA B C` will be a. `cos^(-1)((17)/(31))` b. `30^0` c. `90^0` d. `cos^(-1)((19)/(35))`

A

`cos^(-1)((17)/(31))`

B

`30^(@)`

C

`90^(@)`

D

`cos^(-1)((19)/(35))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the faces OAB and ABC of the tetrahedron with vertices O(0,0,0), A(1,2,1), B(2,1,3), and C(-1,1,2), we will follow these steps: ### Step 1: Find the position vectors The position vectors of points O, A, B, and C are: - \(\vec{O} = (0, 0, 0)\) - \(\vec{A} = (1, 2, 1)\) - \(\vec{B} = (2, 1, 3)\) - \(\vec{C} = (-1, 1, 2)\) ### Step 2: Find vectors OA and OB The vectors OA and OB can be calculated as follows: \[ \vec{OA} = \vec{A} - \vec{O} = (1, 2, 1) - (0, 0, 0) = (1, 2, 1) \] \[ \vec{OB} = \vec{B} - \vec{O} = (2, 1, 3) - (0, 0, 0) = (2, 1, 3) \] ### Step 3: Calculate the normal vector to the plane OAB The normal vector \( \vec{n_1} \) to the plane OAB can be found using the cross product of vectors OA and OB: \[ \vec{n_1} = \vec{OA} \times \vec{OB} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 1 \\ 2 & 1 & 3 \end{vmatrix} \] Calculating this determinant: \[ \vec{n_1} = \hat{i} \begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} \] \[ = \hat{i} (2 \cdot 3 - 1 \cdot 1) - \hat{j} (1 \cdot 3 - 1 \cdot 2) + \hat{k} (1 \cdot 1 - 2 \cdot 2) \] \[ = \hat{i} (6 - 1) - \hat{j} (3 - 2) + \hat{k} (1 - 4) \] \[ = 5\hat{i} - 1\hat{j} - 3\hat{k} \] Thus, \( \vec{n_1} = (5, -1, -3) \). ### Step 4: Find vectors AB and AC Next, we find the vectors AB and AC: \[ \vec{AB} = \vec{B} - \vec{A} = (2, 1, 3) - (1, 2, 1) = (1, -1, 2) \] \[ \vec{AC} = \vec{C} - \vec{A} = (-1, 1, 2) - (1, 2, 1) = (-2, -1, 1) \] ### Step 5: Calculate the normal vector to the plane ABC The normal vector \( \vec{n_2} \) to the plane ABC can be found using the cross product of vectors AB and AC: \[ \vec{n_2} = \vec{AB} \times \vec{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 2 \\ -2 & -1 & 1 \end{vmatrix} \] Calculating this determinant: \[ \vec{n_2} = \hat{i} \begin{vmatrix} -1 & 2 \\ -1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 2 \\ -2 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -1 \\ -2 & -1 \end{vmatrix} \] \[ = \hat{i} (-1 \cdot 1 - 2 \cdot -1) - \hat{j} (1 \cdot 1 - 2 \cdot -2) + \hat{k} (1 \cdot -1 - -1 \cdot -2) \] \[ = \hat{i} (-1 + 2) - \hat{j} (1 + 4) + \hat{k} (-1 - 2) \] \[ = 1\hat{i} - 5\hat{j} - 3\hat{k} \] Thus, \( \vec{n_2} = (1, -5, -3) \). ### Step 6: Find the angle between the two normal vectors The angle \( \theta \) between the two planes is given by the formula: \[ \cos \theta = \frac{\vec{n_1} \cdot \vec{n_2}}{|\vec{n_1}| |\vec{n_2}|} \] Calculating the dot product \( \vec{n_1} \cdot \vec{n_2} \): \[ \vec{n_1} \cdot \vec{n_2} = (5)(1) + (-1)(-5) + (-3)(-3) = 5 + 5 + 9 = 19 \] ### Step 7: Calculate the magnitudes of the normal vectors Calculating the magnitudes: \[ |\vec{n_1}| = \sqrt{5^2 + (-1)^2 + (-3)^2} = \sqrt{25 + 1 + 9} = \sqrt{35} \] \[ |\vec{n_2}| = \sqrt{1^2 + (-5)^2 + (-3)^2} = \sqrt{1 + 25 + 9} = \sqrt{35} \] ### Step 8: Substitute into the cosine formula Now substituting back into the cosine formula: \[ \cos \theta = \frac{19}{\sqrt{35} \cdot \sqrt{35}} = \frac{19}{35} \] ### Step 9: Find the angle Thus, the angle \( \theta \) is: \[ \theta = \cos^{-1}\left(\frac{19}{35}\right) \] ### Conclusion The angle between the faces OAB and ABC is \( \cos^{-1}\left(\frac{19}{35}\right) \).

To find the angle between the faces OAB and ABC of the tetrahedron with vertices O(0,0,0), A(1,2,1), B(2,1,3), and C(-1,1,2), we will follow these steps: ### Step 1: Find the position vectors The position vectors of points O, A, B, and C are: - \(\vec{O} = (0, 0, 0)\) - \(\vec{A} = (1, 2, 1)\) - \(\vec{B} = (2, 1, 3)\) - \(\vec{C} = (-1, 1, 2)\) ...
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|17 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise REASONING TYPE|10 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise SUBJECTIVE TYPE|17 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

Prove that the tetrahedron with vertices at the points O(0,0,0),\ A(0,1,1), B(1,0,1)a n d\ C(1,1,0) is a regular one.

Show that the points A(0,1,2),B(2,-1,3)a n dC(1,-3,1) are vertices of an isosceles right-angled triangle.

Consider a triangle with vertices A(1,2),B(3,1) and C(-3,0) . Find the equation of altitude through vertex A .

Show that the points A(2,-1,3),B(1,-3,1) and C(0,1,2) are the vertices of an isosceles right angled triangle.

Prove that the points O(0,0,0), A(2.0,0), B(1,sqrt3,0) and C(1,1/sqrt3,(2sqrt2)/sqrt3) are the vertices of a regular tetrahedron.,

Show that the points A(2, 1), B(0,3), C(-2, 1) and D(0, -1) are the vertices of a square.

If A(0,1,1),B(2,3,-2),C(22 ,19 ,-5)a n dD(1,-12 ,1) are the vertices of a quadrailateral A B C D , find its area.

The angle between a line x=1,y=2 and y+1=0, z=0 is (A) 0^0 (B) 30^0 (C) 60^0 (D) 90^0

The angle between the straight lines (x+1)/2=(y-2)/5=(z+3)/4a n d(x-1)/1=(y+2)/2=(z-3)/(-3) is 45^0 b. 30^0 c. 60^0 d. 90^0

The vertices of a triangle ABC are A(0, 0), B(2, -1) and C(9, 2) , find cos B .

CENGAGE ENGLISH-THREE-DIMENSIONAL GEOMETRY -SINGLE CORRECT ANSWER TYPE
  1. A line makes an angle theta with each of the x-and z-axes. If the an...

    Text Solution

    |

  2. The shortest distance from the plane 12 x+y+3z=327to the sphere x^2+y^...

    Text Solution

    |

  3. A tetrahedron has vertices O(0,0,0),A(1,2,1),B(2,1,3),a n dC(-1,1,2), ...

    Text Solution

    |

  4. The radius of the circle in which the sphere x^(I2)+y^2+z^2+2z-2y-4...

    Text Solution

    |

  5. The lines (x-2)/1=(y-3)/1=(z-4)/(-k) and (x-1)/k=(y-4)/2=(z-5)/1 are c...

    Text Solution

    |

  6. The point of intersection of the lines (x-5)/3=(y-7)/(-1)=(z+2)/1a ...

    Text Solution

    |

  7. A particle just clears a wall of height b at distance a and strikes...

    Text Solution

    |

  8. Find the equation of a plane which passes through the point (3, 2, 0...

    Text Solution

    |

  9. The dr. of normal to the plane through (1,0,0), (0,1,0) which makes an...

    Text Solution

    |

  10. The centre of the circle given by vecr.(hati+2hatj+2hatk)=15and|vecr-(...

    Text Solution

    |

  11. The lines which intersect the skew lines y=m x ,z=c ; y=-m x ,z=-c a...

    Text Solution

    |

  12. Distance of the point P(vecp) from the line vecr=veca+lamdavecb is ...

    Text Solution

    |

  13. From the point P(a ,b ,c), let perpendicualars P La n dP M be drawn to...

    Text Solution

    |

  14. The plane vecr cdot vecn = q will contain the line vecr = veca + lambd...

    Text Solution

    |

  15. The projection of point P(vecp) on the plane vecr.vecn=q is (vecs), th...

    Text Solution

    |

  16. The angle between hati and line of the intersection of the plane vecr...

    Text Solution

    |

  17. The line (x+6)/5=(y+10)/3=(z+14)/8 is the hypotenuse of an isosceles ...

    Text Solution

    |

  18. If vec a and vec b are two unit vectors and theta is the angle between...

    Text Solution

    |

  19. Consider triangle A O B in the x-y plane, where A-=(1,0,0),B-=(0,2,0)a...

    Text Solution

    |

  20. Let veca=hati+hatj and vecb=2hati-hatk. Then the point of intersection...

    Text Solution

    |