Home
Class 12
MATHS
Distance of the point P(vecp) from the ...

Distance of the point `P(vecp)` from the line `vecr=veca+lamdavecb` is
(a)`|(veca-vecp)+(((vecp-veca).vecb)vecb)/(|vecb|^(2))|` (b)`|(vecb-vecp)+(((vecp-veca).vecb)vecb)/(|vecb|^(2))|`
(c)`|(veca-vecp)+(((vecp-vecb).vecb)vecb)/(|vecb|^(2))|` (d)none of these

A

`|(veca=vecp)+(((vecp-veca).vecb)vecb)/(|vecb|^(2))|`

B

`|(vecb-vecp)+(((vecp-veca).vecb)vecb)/(|vecb|^(2))|`

C

`|(veca-vecp)+(((vecp-veca).vecb)vecb)/(|vecb|^(2))|`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the distance of the point \( P \) represented by the vector \( \vec{p} \) from the line given by \( \vec{r} = \vec{a} + \lambda \vec{b} \), we can follow these steps: ### Step 1: Understand the line and point The line can be represented as \( \vec{r} = \vec{a} + \lambda \vec{b} \), where \( \vec{a} \) is a point on the line, \( \lambda \) is a scalar parameter, and \( \vec{b} \) is the direction vector of the line. The point \( P \) is represented by the vector \( \vec{p} \). **Hint:** Identify the components of the line and the point clearly. ### Step 2: Find a point \( D \) on the line For some value of \( \lambda_1 \), the point \( D \) on the line can be expressed as: \[ \vec{D} = \vec{a} + \lambda_1 \vec{b} \] **Hint:** Remember that \( D \) is a point on the line defined by \( \vec{a} \) and \( \vec{b} \). ### Step 3: Establish the perpendicularity condition The line segment \( AP \) (from point \( A \) to point \( P \)) is perpendicular to the line. Therefore, the vector \( \vec{D} - \vec{p} \) must be perpendicular to \( \vec{b} \). This gives us the condition: \[ (\vec{D} - \vec{p}) \cdot \vec{b} = 0 \] **Hint:** Use the dot product to express the condition of perpendicularity. ### Step 4: Substitute \( \vec{D} \) into the perpendicularity condition Substituting \( \vec{D} \) into the equation gives: \[ (\vec{a} + \lambda_1 \vec{b} - \vec{p}) \cdot \vec{b} = 0 \] This simplifies to: \[ (\vec{a} - \vec{p}) \cdot \vec{b} + \lambda_1 |\vec{b}|^2 = 0 \] **Hint:** Rearranging this equation will help you find \( \lambda_1 \). ### Step 5: Solve for \( \lambda_1 \) From the equation, we can solve for \( \lambda_1 \): \[ \lambda_1 = \frac{(\vec{p} - \vec{a}) \cdot \vec{b}}{|\vec{b}|^2} \] **Hint:** Make sure to pay attention to the signs when rearranging. ### Step 6: Find the coordinates of point \( D \) Now substitute \( \lambda_1 \) back into the equation for \( \vec{D} \): \[ \vec{D} = \vec{a} + \frac{(\vec{p} - \vec{a}) \cdot \vec{b}}{|\vec{b}|^2} \vec{b} \] **Hint:** This gives you the coordinates of point \( D \) in terms of \( \vec{a} \), \( \vec{b} \), and \( \vec{p} \). ### Step 7: Calculate the distance \( AP \) The distance \( AP \) can be expressed as: \[ AP = |\vec{D} - \vec{p}| \] Substituting \( \vec{D} \) gives: \[ AP = |\left(\vec{a} - \vec{p}\right) + \frac{(\vec{p} - \vec{a}) \cdot \vec{b}}{|\vec{b}|^2} \vec{b}| \] **Hint:** This expression represents the distance from point \( P \) to the line. ### Step 8: Final expression Thus, the distance of point \( P \) from the line is: \[ |\left(\vec{a} - \vec{p}\right) + \frac{(\vec{p} - \vec{a}) \cdot \vec{b}}{|\vec{b}|^2} \vec{b}| \] This matches option (a): \[ |\left(\vec{a} - \vec{p}\right) + \frac{(\vec{p} - \vec{a}) \cdot \vec{b}}{|\vec{b}|^2} \vec{b}| \] ### Conclusion The correct answer is (a). ---

To find the distance of the point \( P \) represented by the vector \( \vec{p} \) from the line given by \( \vec{r} = \vec{a} + \lambda \vec{b} \), we can follow these steps: ### Step 1: Understand the line and point The line can be represented as \( \vec{r} = \vec{a} + \lambda \vec{b} \), where \( \vec{a} \) is a point on the line, \( \lambda \) is a scalar parameter, and \( \vec{b} \) is the direction vector of the line. The point \( P \) is represented by the vector \( \vec{p} \). **Hint:** Identify the components of the line and the point clearly. ### Step 2: Find a point \( D \) on the line ...
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|17 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise REASONING TYPE|10 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise SUBJECTIVE TYPE|17 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

(vecA+2vecB).(2vecA-3vecB) :-

Find |veca| and |vecb| if (veca+vecb).(veca-vecb)=8 and |veca|=8|vecb|.

Find |veca| and |vecb| if (veca+vecb).(veca-vecb)=8 and |veca|=8|vecb| .

Prove that (veca+3vecb)xx(veca+vecb)+(3veca-5vecb)xx(veca-vecb)=0

Prove that (vecaxxvecb)^(2)= |(veca.veca" "veca.vecb),(veca.vecb" "vecb.vecb)|

Find |veca|and |vecb|, if (veca+vecb).(veca-vecb) =8 and |veca|=8|vecb|

For two vectors veca and vecb,veca,vecb=|veca||vecb| then (A) veca||vecb (B) veca_|_vecb (C) veca=vecb (D) none of these

The resolved part of the vector veca along the vector vecb is veclamda and that perpendicular to vecb is vecmu . Then (A) veclamda=((veca.vecb).veca)/veca^2 (B) veclamda=((veca.vecb).vecb)/vecb^2 (C) vecmu=((vecb.vecb)veca-(veca.vecb)vecb)/vecb^2 (D) vecmu=(vecbxx(vecaxxvecb))/vecb^2

If veca is parallel to vecb xx vecc, then (veca xx vecb) .(veca xx vecc) is equal to (a) |veca|^(2)(vecb.vecc) (b) |vecb|^(2)(veca .vecc) (c) |vecc|^(2)(veca.vecb) (d) none of these

If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb,vecc),(veca.veca, veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|=0

CENGAGE ENGLISH-THREE-DIMENSIONAL GEOMETRY -SINGLE CORRECT ANSWER TYPE
  1. The centre of the circle given by vecr.(hati+2hatj+2hatk)=15and|vecr-(...

    Text Solution

    |

  2. The lines which intersect the skew lines y=m x ,z=c ; y=-m x ,z=-c a...

    Text Solution

    |

  3. Distance of the point P(vecp) from the line vecr=veca+lamdavecb is ...

    Text Solution

    |

  4. From the point P(a ,b ,c), let perpendicualars P La n dP M be drawn to...

    Text Solution

    |

  5. The plane vecr cdot vecn = q will contain the line vecr = veca + lambd...

    Text Solution

    |

  6. The projection of point P(vecp) on the plane vecr.vecn=q is (vecs), th...

    Text Solution

    |

  7. The angle between hati and line of the intersection of the plane vecr...

    Text Solution

    |

  8. The line (x+6)/5=(y+10)/3=(z+14)/8 is the hypotenuse of an isosceles ...

    Text Solution

    |

  9. If vec a and vec b are two unit vectors and theta is the angle between...

    Text Solution

    |

  10. Consider triangle A O B in the x-y plane, where A-=(1,0,0),B-=(0,2,0)a...

    Text Solution

    |

  11. Let veca=hati+hatj and vecb=2hati-hatk. Then the point of intersection...

    Text Solution

    |

  12. The co-ordinates of the point P on the line vecr =(hati +hatj + hatk...

    Text Solution

    |

  13. The ratio in which the line segment joining the points whose position...

    Text Solution

    |

  14. Which of the following are equation for the plane passing through the ...

    Text Solution

    |

  15. Given vecalpha=3 hat i+ hat j+2 hat ka n d vecbeta= hat i-2 hat j-4 h...

    Text Solution

    |

  16. L(1)andL(2) are two lines whose vector equations are L(1):vecr=lamda...

    Text Solution

    |

  17. The shortest distance between the lines (x-3)/3=(y-8)/(-1)=(z-3)/1a...

    Text Solution

    |

  18. A long solenoid having n = 200 turns per metre has a circular cross-se...

    Text Solution

    |

  19. The line through of the plane passing through the lines (x-4)/(1)=(y-3...

    Text Solution

    |

  20. The three planes 4y+6z=5,2x+3y+5z=5a n d6x+5y+9z=10 a. meet in a poi...

    Text Solution

    |