Home
Class 12
MATHS
The projection of point P(vecp) on the p...

The projection of point `P(vecp)` on the plane `vecr.vecn=q` is `(vecs)`, then

A

`vecs=((q-vecp.vecn)vecn)/(|vecn|^(2))`

B

`vecs=vecp+((q-vecp.vecn)vecn)/(|vecn|^(2))`

C

`vecs=vecp-((vecp.vecn)vecn)/(|vecn|^(2))`

D

`vecs=vecp-((q-vecp.vecn)vecn)/(|vecn|^(2))`

Text Solution

Verified by Experts

The correct Answer is:
b

We have `vecs-vecp=lamdavecnandvecs.n=q.` Thus,
`(lamdavecn+vecp).vecn=q`
or `lamda=(q-vecp.vecn)/(|vecn|^(2))`
`impliesvecs=vecp+((vecq-vecp.vecn)vecn)/(|vecn|^(2))`
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|17 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise REASONING TYPE|10 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise SUBJECTIVE TYPE|17 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

The projection of point P( vec p) on the plane vec rdot vec n=q is ( vec s) , then a. vec s=((q- vec pdot vec n) vec n)/(| vec n|^2) b. vec s=p+((q- vec pdot vec n) vec n)/(| vec n|^2) c. vec s=p-(( vec pdot vec n) vec n)/(| vec n|^2) d. vec s=p-((q- vec pdot vec n) vec n)/(| vec n|^2)

Distance of point P(vecP) from the plane vecr.vecn=0 is

The reflection of the point veca in the plane vecr.vecn=q is (A) veca+ (vecq-veca.vecn)/(|vecn| (B) veca+2((vecq-veca.vecn)/(|vecn|^2))vecn (C) veca+(2(vecq+veca.vecn))/(|vecn|) (D) none of these

The reflection of the point vec a in the plane vec rdot vec n=q is a. vec a+(( vec q- vec adot vec n))/(| vec n|) b. vec a+2((( vec q- vec adot vec n))/(| vec n|)) vec n c. vec a+(2( vec q+ vec adot vec n))/(| vec n|^2) vec n d. none of these

Find the projection of the line vecr=veca+tvecb on the plane given by vecr.vecn=q .

The equation of the line throgh the point veca parallel to the plane vecr.vecn =q and perpendicular to the line vecr=vecb+tvecc is (A) vecr=veca+lamda (vecnxxvecc) (B) (vecr-veca)xx(vecnxxvecc)=0 (C) vecr=vecb+lamda(vecnxxvecc) (D) none of these

Let A be the given point whose position vector relative to an origin O be veca and vec(ON)=vecn. let vecr be the position vector of any point P which lies on the plane passing through A and perpendicular to ON.Then for any point P on the plane, vec(AP).vecn=0 or, (vecr-veca).vecn=0 or vecr.vecn=veca.vecn or , vecr.hatn=p where p ils the perpendicular distance of the plane from origin. The equation fo the plane which ponts contains the line vecr=2hati+t(hatj-hatk0 where it is scalar and perpendicular to the plane vecr.(hati-hatk)=3 is (A) vecr.(hati-hatj-hatk)=2 (B) vecr.(hati+hatj-hatk)=2 (C) vecr.(hati+hatj+hatk)=2 (D) vecr.(2hati+hatj-hatk)=4

Find the equation of a straight line in the plane vecr.vecn=d which is parallel to vecr.vecn=d("where "vecn.vecb=0) .

Let A bet eh given point whose position vector relative to an origin O be veca and vec(ON)=vecn. let vecr be the position vector of any point P which lies on the plane passing through A and perpendicular to ON.Then for any point P on the plane, vec(AP).vecn=0 or, (vecr-veca).vecn=0 or vecr.vecn=veca.vecn or , vecr.hatn=p where p ils the perpendicular distance of the plane from origin. The equation of the plane through the point hati+2hatj-hatk and perpendicular to the line of intersection of the planes vecr.(3hati-hatj+hatk)=1 and vecr.(-hati-4hatj+2hatk)=2 is (A) vecr.(2hati+7hatj-13hatk)=29 (B) vecr.(2hati-7hatj-13hatk)=1 (C) vecr.(2hati-7hatj-13hatk)+25=0 (D) vecr.(2hati+7hatj+13hatk)=3

Distance of the point P(vecp) from the line vecr=veca+lamdavecb is (a) |(veca-vecp)+(((vecp-veca).vecb)vecb)/(|vecb|^(2))| (b) |(vecb-vecp)+(((vecp-veca).vecb)vecb)/(|vecb|^(2))| (c) |(veca-vecp)+(((vecp-vecb).vecb)vecb)/(|vecb|^(2))| (d)none of these

CENGAGE ENGLISH-THREE-DIMENSIONAL GEOMETRY -SINGLE CORRECT ANSWER TYPE
  1. From the point P(a ,b ,c), let perpendicualars P La n dP M be drawn to...

    Text Solution

    |

  2. The plane vecr cdot vecn = q will contain the line vecr = veca + lambd...

    Text Solution

    |

  3. The projection of point P(vecp) on the plane vecr.vecn=q is (vecs), th...

    Text Solution

    |

  4. The angle between hati and line of the intersection of the plane vecr...

    Text Solution

    |

  5. The line (x+6)/5=(y+10)/3=(z+14)/8 is the hypotenuse of an isosceles ...

    Text Solution

    |

  6. If vec a and vec b are two unit vectors and theta is the angle between...

    Text Solution

    |

  7. Consider triangle A O B in the x-y plane, where A-=(1,0,0),B-=(0,2,0)a...

    Text Solution

    |

  8. Let veca=hati+hatj and vecb=2hati-hatk. Then the point of intersection...

    Text Solution

    |

  9. The co-ordinates of the point P on the line vecr =(hati +hatj + hatk...

    Text Solution

    |

  10. The ratio in which the line segment joining the points whose position...

    Text Solution

    |

  11. Which of the following are equation for the plane passing through the ...

    Text Solution

    |

  12. Given vecalpha=3 hat i+ hat j+2 hat ka n d vecbeta= hat i-2 hat j-4 h...

    Text Solution

    |

  13. L(1)andL(2) are two lines whose vector equations are L(1):vecr=lamda...

    Text Solution

    |

  14. The shortest distance between the lines (x-3)/3=(y-8)/(-1)=(z-3)/1a...

    Text Solution

    |

  15. A long solenoid having n = 200 turns per metre has a circular cross-se...

    Text Solution

    |

  16. The line through of the plane passing through the lines (x-4)/(1)=(y-3...

    Text Solution

    |

  17. The three planes 4y+6z=5,2x+3y+5z=5a n d6x+5y+9z=10 a. meet in a poi...

    Text Solution

    |

  18. The equation of the plane through the line of intersection of the plan...

    Text Solution

    |

  19. Equation of the plane passing through the points (2,2,1)a n d(9,3,6)...

    Text Solution

    |

  20. Find the value of lamda such that the line (x-1)/(2)=(y-1)/(3)=(z-1)/(...

    Text Solution

    |