Home
Class 12
MATHS
Let veca=hati+hatj and vecb=2hati-hatk. ...

Let `veca=hati+hatj and vecb=2hati-hatk.` Then the point of intersection of the lines `vecrxxveca=vecbxxveca and vecrxxvecb=vecaxxvecb` is (A) `(3,-1,10` (B) `(3,1,-1)` (C) `(-3,1,1)` (D) `(-3,-1,-1)`

A

(3,-1,1)

B

(3,1,-1)

C

(-3,1,1)

D

(-3,-1,-1)

Text Solution

AI Generated Solution

The correct Answer is:
To find the point of intersection of the lines given by the equations \( \vec{r} \times \vec{a} = \vec{b} \times \vec{a} \) and \( \vec{r} \times \vec{b} = \vec{a} \times \vec{b} \), we will follow these steps: ### Step 1: Define the vectors We have: \[ \vec{a} = \hat{i} + \hat{j} \] \[ \vec{b} = 2\hat{i} - \hat{k} \] ### Step 2: Set up the equations From the first equation \( \vec{r} \times \vec{a} = \vec{b} \times \vec{a} \), we can express \( \vec{r} \) in terms of \( \vec{b} \) and \( \vec{a} \): \[ \vec{r} = \vec{b} + \lambda \vec{a} \] where \( \lambda \) is a scalar. From the second equation \( \vec{r} \times \vec{b} = \vec{a} \times \vec{b} \), we can express \( \vec{r} \) in terms of \( \vec{a} \) and \( \vec{b} \): \[ \vec{r} = \vec{a} + \mu \vec{b} \] where \( \mu \) is another scalar. ### Step 3: Equate the two expressions for \( \vec{r} \) Now we have two expressions for \( \vec{r} \): \[ \vec{b} + \lambda \vec{a} = \vec{a} + \mu \vec{b} \] ### Step 4: Rearranging the equation Rearranging gives us: \[ \lambda \vec{a} - \mu \vec{b} = \vec{a} - \vec{b} \] ### Step 5: Compare coefficients Now we can compare coefficients of \( \vec{a} \) and \( \vec{b} \): - Coefficient of \( \vec{a} \): \( \lambda = 1 \) - Coefficient of \( \vec{b} \): \( -\mu = -1 \) implies \( \mu = 1 \) ### Step 6: Substitute back to find \( \vec{r} \) Substituting \( \lambda = 1 \) into \( \vec{r} = \vec{b} + \lambda \vec{a} \): \[ \vec{r} = \vec{b} + \vec{a} \] Now substituting the values of \( \vec{a} \) and \( \vec{b} \): \[ \vec{r} = (2\hat{i} - \hat{k}) + (\hat{i} + \hat{j}) = (2\hat{i} + \hat{i}) + \hat{j} - \hat{k} = 3\hat{i} + \hat{j} - \hat{k} \] ### Step 7: Write the final point of intersection Thus, the point of intersection is: \[ (3, 1, -1) \] ### Final Answer The point of intersection of the lines is \( (3, 1, -1) \), which corresponds to option (B). ---

To find the point of intersection of the lines given by the equations \( \vec{r} \times \vec{a} = \vec{b} \times \vec{a} \) and \( \vec{r} \times \vec{b} = \vec{a} \times \vec{b} \), we will follow these steps: ### Step 1: Define the vectors We have: \[ \vec{a} = \hat{i} + \hat{j} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|17 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise REASONING TYPE|10 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise SUBJECTIVE TYPE|17 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If veca=5hati-hatj-3hatk and vecb=hati+3hatj-5hatk , then show that the vectors veca+vecb and veca-vecb are perpendicular.

If veca=4hati+3hatj+2hatk and vecb=3hati+2hatk , find |vecbxx2veca|

The point of intersection of vecrxxveca=vecbxxveca and vecrxxvecb=vecaxxvecb where veca=hati+hatj and vecb=2hati-hatk is (A) 3hati+hatj-hatk (B) 3hati-hatk (C) 3hati+2hatj+hatk (D) none of these

If vecA=2hati+3hatj-hatk and vecB=-hati+3hatj+4hatk then projection of vecA on vecB will be

if veca=hati-hatj-3hatk, vecb=4hati-3hatj+hatk and vecc=2hati+hatj+2hatk, verify that vecaxx(vecb+vecc)=vecaxxvecb+vecaxxvecc

veca =1/sqrt(10)(3hati + hatk) and vecb =1/7(2hati +3hatj-6hatk) , then the value of (2veca-vecb).[(vecaxxvecb)xx(veca+2vecb)] is:

If veca=2hati+3hatj+4hatk,veca.vecb=2 and vecaxxvecb=2hati-hatk , then vecb is

If veca = hati+hatj-2hatk, vecb=2hati-3hatj+hatk the value of (2veca+3vecb) . (2vecbxx3veca) is :

CENGAGE ENGLISH-THREE-DIMENSIONAL GEOMETRY -SINGLE CORRECT ANSWER TYPE
  1. If vec a and vec b are two unit vectors and theta is the angle between...

    Text Solution

    |

  2. Consider triangle A O B in the x-y plane, where A-=(1,0,0),B-=(0,2,0)a...

    Text Solution

    |

  3. Let veca=hati+hatj and vecb=2hati-hatk. Then the point of intersection...

    Text Solution

    |

  4. The co-ordinates of the point P on the line vecr =(hati +hatj + hatk...

    Text Solution

    |

  5. The ratio in which the line segment joining the points whose position...

    Text Solution

    |

  6. Which of the following are equation for the plane passing through the ...

    Text Solution

    |

  7. Given vecalpha=3 hat i+ hat j+2 hat ka n d vecbeta= hat i-2 hat j-4 h...

    Text Solution

    |

  8. L(1)andL(2) are two lines whose vector equations are L(1):vecr=lamda...

    Text Solution

    |

  9. The shortest distance between the lines (x-3)/3=(y-8)/(-1)=(z-3)/1a...

    Text Solution

    |

  10. A long solenoid having n = 200 turns per metre has a circular cross-se...

    Text Solution

    |

  11. The line through of the plane passing through the lines (x-4)/(1)=(y-3...

    Text Solution

    |

  12. The three planes 4y+6z=5,2x+3y+5z=5a n d6x+5y+9z=10 a. meet in a poi...

    Text Solution

    |

  13. The equation of the plane through the line of intersection of the plan...

    Text Solution

    |

  14. Equation of the plane passing through the points (2,2,1)a n d(9,3,6)...

    Text Solution

    |

  15. Find the value of lamda such that the line (x-1)/(2)=(y-1)/(3)=(z-1)/(...

    Text Solution

    |

  16. The equation of the plane passing through the intersection of x + 2y +...

    Text Solution

    |

  17. The plane 4x+7y+4z+81=0 is rotated through a right angle about its l...

    Text Solution

    |

  18. The vector equation of the plane passing through the origin and the li...

    Text Solution

    |

  19. The two lines vecr=veca+veclamda(vecbxxvecc) and vecr=vecb+mu(veccxxve...

    Text Solution

    |

  20. The projection of the line (x+1)/(-1)=y/2=(z-1)/3 on the plane x-2y+z=...

    Text Solution

    |