Home
Class 12
MATHS
Which of the following lines lie on t...

Which of the following lines lie on the plane `x+2y-z+4=0?` a. `(x-1)/1=y/(-1)=(z-5)/1` b. `x-y+z=2x+y-z=0` c. ` hat r=2 hat i- hat j+4 hat k+lambda(3 hat i+ hat j+5 hat k)` d. none of these

A

`(x-1)/(1)=(y)/(-1)=(z-5)/(-1)`

B

`x-y+z=2x+y-z=0`

C

`vecr=2hati-hatj+4hatk+lamda(3hati+hatj+5hatk)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine which of the given lines lie on the plane defined by the equation \( x + 2y - z + 4 = 0 \), we will analyze each option step by step. ### Step 1: Identify the normal vector of the plane The equation of the plane can be written as: \[ x + 2y - z + 4 = 0 \] From this equation, we can identify the normal vector \( \mathbf{n} \) of the plane as: \[ \mathbf{n} = (1, 2, -1) \] ### Step 2: Analyze each option #### Option A: \[ \frac{x-1}{1} = \frac{y}{-1} = \frac{z-5}{1} \] This can be rewritten in parametric form: - Let \( t = \frac{x-1}{1} \) then: - \( x = t + 1 \) - \( y = -t \) - \( z = t + 5 \) Substituting these into the plane equation: \[ (t + 1) + 2(-t) - (t + 5) + 4 = 0 \] Simplifying: \[ t + 1 - 2t - t - 5 + 4 = 0 \] \[ 0 = 0 \] This holds true, hence **Option A lies on the plane**. #### Option B: \[ x - y + z = 2 \quad \text{and} \quad 2x + y - z = 0 \] We can find the direction ratios of the lines represented by these equations. The direction ratios can be derived from the coefficients of \( x, y, z \). For the first equation: \[ x - y + z - 2 = 0 \implies (1, -1, 1) \] For the second equation: \[ 2x + y - z = 0 \implies (2, 1, -1) \] Now, we need to check if these direction ratios satisfy the plane equation. Taking a point on the line, we can use \( x = 0, y = 0 \) in the first equation: \[ 0 - 0 + z = 2 \implies z = 2 \implies (0, 0, 2) \] Substituting into the plane equation: \[ 0 + 2(0) - 2 + 4 = 0 \implies 2 \neq 0 \] Thus, **Option B does not lie on the plane**. #### Option C: \[ \mathbf{r} = 2\mathbf{i} - \mathbf{j} + 4\mathbf{k} + \lambda(3\mathbf{i} + \mathbf{j} + 5\mathbf{k}) \] This can be expressed in parametric form: - For \( \lambda = 0 \): - \( (x, y, z) = (2, -1, 4) \) - For \( \lambda = 1 \): - \( x = 2 + 3\lambda \) - \( y = -1 + \lambda \) - \( z = 4 + 5\lambda \) Substituting \( (2, -1, 4) \) into the plane equation: \[ 2 + 2(-1) - 4 + 4 = 0 \implies 0 = 0 \] This holds true, hence **Option C lies on the plane**. ### Conclusion: The lines that lie on the plane \( x + 2y - z + 4 = 0 \) are: - Option A - Option C

To determine which of the given lines lie on the plane defined by the equation \( x + 2y - z + 4 = 0 \), we will analyze each option step by step. ### Step 1: Identify the normal vector of the plane The equation of the plane can be written as: \[ x + 2y - z + 4 = 0 \] From this equation, we can identify the normal vector \( \mathbf{n} \) of the plane as: ...
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise REASONING TYPE|10 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|12 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|86 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

If vec r=x hat i+y hat j+z hat k ,\ then write the value of | vec rxx hat i|^2dot

The unit vector orthogonal to vector -hat i+ hat j+2 hat k and making equal angles with the x and y-axis a. +-1/3(2 hat i+2 hat j- hat k) b. +-1/3( hat i+ hat j- hat k) c. +-1/3(2 hat i-2 hat j- hat k) d. none of these

Find the shortest distance between the lines -> r=( hat i+2 hat j+ hat k)+lambda( hat i- hat j+ hat k) and -> r=2 hat i- hat j- hat k+mu(2 hat i+ hat j+2 hat k)

Find the distance of the point (-1,-5,-10) from the point of intersection of line vec r=2 hat i- hat j+2 hat k+lambda(3 hat i+4 hat j+2 hat k) and the plane vec r ( hat i- hat j+ hat k)=5.

Find the distance of the point ( 1, 5, 10) from the point of intersection of the line -> r=2 hat i- hat j+2 hat k+lambda(3 hat i+4 hat j+2 hat k) and the plane -> r=( hat i- hat j+ hat k)=5 .

Determine whether the following pair of lines intersect or not. (1) vec r= hat i-5 hat j+lambda(2 hat i+ hat k); vec r=2 hat i- hat j+mu( hat i+ hat j- hat k) (2) vec r= hat i+ hat j- hat k+lambda(3 hat i- hat j); vec r=4 hat i- hat k+mu(2 hat i+3 hat k)

The distance between the line vec r=(2 hat i-2 hat j+3 hat k)+lambda( hat i- hat j+4 hat k) and plane vec rdot( hat i+5 hat j+ hat k)=5.

Find the shortest distance between the lines vec r=( hat i+2 hat j+ hat k)+lambda( hat i- hat j+ hat k) and vec r=(2 hat i- hat j- hat k)+mu(2 hat i+ hat j+2 hat k)

Find the shortest distance between the lines vec r=( hat i+2 hat j+ hat k)+lambda( hat i- hat j+ hat k) and vec r=2 hat i- hat j- hat k+mu(2 hat i+ hat j+2 hat k)

Show that each of the following triads of vectors are coplanar: vec a= hat i+2 hat j- hat k , vec b=3 hat i+2 hat j+7 hat k , vec c=5 hat i+6 hat j+5 hat k vec a=-4 hat i-6 hat j-2 hat k , vec b=- hat i+4 hat j+3 hat k , vec c=-8 hat i- hat j+3 hat k hat a= hat i-2 hat j+3 hat k , vec b=-2 hat i+3 hat j-4 hat k , vec c= hat i-3 hat j+5 hat k

CENGAGE ENGLISH-THREE-DIMENSIONAL GEOMETRY -MULTIPLE CORRECT ANSWER TYPE
  1. Let P M be the perpendicular from the point P(1,2,3) to the x-y plane....

    Text Solution

    |

  2. Let P(1) denote the equation of a plane to which the vector (hati+hatj...

    Text Solution

    |

  3. If the planes vecr.(hati+hatj+hatk)=q(1),vecr.(hati+2ahatj+hatk)=q(2)a...

    Text Solution

    |

  4. A line with direction cosines proportional to 1,-5, a n d-2 meets l...

    Text Solution

    |

  5. Let P=0 be the equation of a plane passing through the line of inter...

    Text Solution

    |

  6. If (2, 3, 5) is one end of a diameter of the sphere x^2+""y^2+""z^2...

    Text Solution

    |

  7. Consider the planes 3x-6y+2z+5=0a n d4x-12y+3z=3. The plane 67 x-162 y...

    Text Solution

    |

  8. If the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(lamda) and (x-1)/(lamda)=(y-4)...

    Text Solution

    |

  9. The equations of the plane which passes through (0,0,0) and which is...

    Text Solution

    |

  10. The x-y plane is rotated about its line of intersection with the y-...

    Text Solution

    |

  11. The equation of the plane which is equally inclined to the lines (x...

    Text Solution

    |

  12. Which of the following lines lie on the plane x+2y-z+4=0? a. (x-1)...

    Text Solution

    |

  13. If the volume of tetrahedron A B C D is 1 cubic units, where A(0,1,2),...

    Text Solution

    |

  14. A rod of length 2 units whose one ends is (1, 0, -1) and other end to...

    Text Solution

    |

  15. Consider a set of point R in which is at a distance of 2 units from t...

    Text Solution

    |

  16. The equation of the line throgh the point veca parallel to the plane v...

    Text Solution

    |

  17. The equation of the line x+y+z-1=0, 4x+y-2z+2=0 written in the symmetr...

    Text Solution

    |