Home
Class 12
MATHS
Statement 1: let A( vec i+ vec j+ vec k)...

Statement 1: let `A( vec i+ vec j+ vec k)a n dB( vec i- vec j+ vec k)` be two points. Then point `P(2 vec i+3 vec j+ vec k)` lies exterior to the sphere with `A B` as its diameter. ,
Statement 2: If `Aa n dB` are any two points and `P` is a point in space such that ` vec(PA).vec(PB) >0` , then point `P` lies exterior to the sphere with `A B` as its diameter.

A

Both the statements are true, and Statement 2 is the correct explanation for Statement 1.

B

Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.

C

Statement 1 is true and Statement 2 is false.

D

Statement 1 is false and Statement 2 is true.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the point \( P(2 \vec{i} + 3 \vec{j} + \vec{k}) \) lies outside the sphere with \( AB \) as its diameter, we will follow these steps: ### Step 1: Identify Points A and B The points are given as: - \( A = \vec{i} + \vec{j} + \vec{k} \) - \( B = \vec{i} - \vec{j} + \vec{k} \) ### Step 2: Calculate the Vector \( \vec{AB} \) The vector \( \vec{AB} \) can be calculated as: \[ \vec{AB} = B - A = (\vec{i} - \vec{j} + \vec{k}) - (\vec{i} + \vec{j} + \vec{k}) = -2\vec{j} \] ### Step 3: Find the Midpoint M of AB The midpoint \( M \) of the segment \( AB \) is given by: \[ M = \frac{A + B}{2} = \frac{(\vec{i} + \vec{j} + \vec{k}) + (\vec{i} - \vec{j} + \vec{k})}{2} = \frac{2\vec{i} + 2\vec{k}}{2} = \vec{i} + \vec{k} \] ### Step 4: Calculate the Radius of the Sphere The radius \( r \) of the sphere with diameter \( AB \) is half the length of \( AB \): \[ |\vec{AB}| = |B - A| = |(-2\vec{j})| = 2 \] Thus, the radius \( r \) is: \[ r = \frac{|\vec{AB}|}{2} = \frac{2}{2} = 1 \] ### Step 5: Calculate the Distance from Point P to Midpoint M Now, we need to find the distance from point \( P(2\vec{i} + 3\vec{j} + \vec{k}) \) to the midpoint \( M(\vec{i} + \vec{k}) \): \[ \vec{PM} = P - M = (2\vec{i} + 3\vec{j} + \vec{k}) - (\vec{i} + \vec{k}) = (2\vec{i} - \vec{i}) + (3\vec{j} - 0) + (1 - 1)\vec{k} = \vec{i} + 3\vec{j} \] The distance \( d \) is: \[ d = |\vec{PM}| = |\vec{i} + 3\vec{j}| = \sqrt{(1)^2 + (3)^2} = \sqrt{1 + 9} = \sqrt{10} \] ### Step 6: Compare Distance with Radius Since \( d = \sqrt{10} \) and \( r = 1 \): \[ \sqrt{10} > 1 \] This indicates that point \( P \) lies outside the sphere. ### Conclusion Both statements are correct: - Statement 1 is true because point \( P \) lies outside the sphere with diameter \( AB \). - Statement 2 is also true as it provides a general condition for any points \( A \) and \( B \).

To determine whether the point \( P(2 \vec{i} + 3 \vec{j} + \vec{k}) \) lies outside the sphere with \( AB \) as its diameter, we will follow these steps: ### Step 1: Identify Points A and B The points are given as: - \( A = \vec{i} + \vec{j} + \vec{k} \) - \( B = \vec{i} - \vec{j} + \vec{k} \) ### Step 2: Calculate the Vector \( \vec{AB} \) ...
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|12 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|5 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|17 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

Statement 1: let A( vec i+ vec j+ vec k)a n dB( vec i- vec j+ vec k) be two points. Then point P(2 vec i+3 vec j+ vec k) lies exterior to the sphere with A B as its diameter. Statement 2: If Aa n dB are any two points and P is a point in space such that vec P Adot vec P B >0 , then point P lies exterior to the sphere with A B as its diameter.

If vec a=i+j ,\ vec b=j+k\ a n d\ vec c=k+i ,\ write unit vectors parallel to vec a+ vec b-2 vec c

let vec a = 2hat i +3hat j and vec b = hat i +4hat j then find projection of vec a on vec b

If vec a= i- j and vec b=- j+2k ,find (vec a-2 vec b)dot( vec a+ vec b)

If vec a=2 vec i+3 vec j- vec k , vec b=- vec i+2 vec j-4 vec k a n d vec c= vec i+ vec j+ vec k , then find thevalue of ( vec axx vec b) dot ( vec axx vec c)dot

Find a unit vector vec c if vec -i+vec j-vec k bisects the angle between vec c and 3 vec i+4vec j .

Statement 1:Let A( vec a),B( vec b)a n dC( vec c) be three points such that vec a=2 hat i+ hat k , vec b=3 hat i- hat j+3 hat ka n d vec c=- hat i+7 hat j-5 hat kdot Then O A B C is a tetrahedron. Statement 2: Let A( vec a),B( vec b)a n dC( vec c) be three points such that vectors vec a , vec ba n d vec c are non-coplanar. Then O A B C is a tetrahedron where O is the origin.

Find the projection of vec a on vec b , if vec a . vec b =8 and vec b=2 hat i + 6 hat j + 3 hat k .

A force vec F = (5 vec i+ 3 vec j+ 2 vec k) N is applied over a particle which displaces it from its origin to the point vec r=(2 vec i- vec j) m . The work done on the particle in joules is.

Find [ vec a\ vec b\ vec c] , when : vec a=2 hat i-3 hat j ,\ vec b= hat i+ hat j- hat k\ a n d\ vec c=3 hat i- hat k .