Home
Class 12
MATHS
If (a, b, c) is a point on the plane 3x...

If `(a, b, c)` is a point on the plane `3x + 2y + z = 7,` then find the least value of `a^2+b^2+c^2,` using vector method.

Text Solution

Verified by Experts

The correct Answer is:
`7`

Clearly minimum value of `a^(2)+b^(2)+c^(2)`
`" " =((|(3(0)+ 2(0)+ (0)-7)|)/(sqrt((3)^(2)+ (2)^(2)+(1)^(2))))^(2) = (49)/(14)=(7)/(2)` units
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES SUBJECTIVE TYPE|5 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES SINGLE CORRECT ANSWER TYPE|9 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|5 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

If (a, b, c) is a point on the plane 3x + 2y + z = 7, then find the least value of 2( a^2+b^2+c^2), using vector method.

Let P(a, b, c) be any on the plane 3x+2y+z=7 , then find the least value of 2(a^2+b^2+c^2) .

If a+2b+3c=4, then find the least value of a^2+b^2+c^2dot

If a+2b+3c=4, then find the least value of a^2+b^2+c^2dot

If x=c y+b z ,y=a z+c x ,z=x+a y ,w h e r e .x ,y ,z are not all zeros, then find the value of a^2+b^2+c^2+2a b c dot

If xy = a, xz = b, yz = c and abc ne 0 , find the value of x^2 + y^2 + z^2 in terms of a, b, c.

Find the distance between points A(2,5,7), B(1,3,5), by using vector method.

If the planes x-c y-b z=0,c x=y+a z=0a n db x+a y-z=0 pass through a straight line, then find the value of a^2+b^2+c^2+2a b cdot

If the planes x-c y-b z=0,c x=y+a z=0a n db x+a y-z=0 pass through a straight line, then find the value of a^2+b^2+c^2+2a b cdot

Find the angle between the planes 2x - y + 3z = 6 and x + y +2z =7 .