Home
Class 12
MATHS
Let vec a, vec b, and vec c be three non...

Let `vec a, vec b, and vec c` be three non coplanar unit vectors such that the angle between every pair of them is `pi/3`. If `vec a xx vec b+ vecb xx vec x=p vec a + q vec b + r vec c` where p,q,r are scalars then the value of `(p^2+2q^2+r^2)/(q^2)` is

Text Solution

Verified by Experts

The correct Answer is:
`(4)`

`|veca|=|vecb|=|vecc|=1`
` veca.vecb=vecb. vecc=vecc.veca=1//2`
Also ` vecaxxvecb+vecbxxvecc=pveca+qvecb+rvecc`
`implies veca.(vecbxxvecc) = p +q(veca.vecb) +r(veca.vecc)`
`implies veca.(vecbxxvecc ) = p+q(veca.vecb) r(veca.vecc)`
`therefore p+(q)/(2)+(r)/(2)=[vecavecbvecc]`
similarly taking dot product with vector `vecb` , we get
`(p)/(2)+q+(r)/(2)=0`
And, taking dot product with vector `vecc`, we get
`(p)/(2)+(q)/(2)+r=[veca vecbvecc]`
solving,(1),(2) and (3) , we get
` p=r=-q`
`implies (p^(2)+2q^(2)+r^(2))/(q^(2))=4`
Promotional Banner

Similar Questions

Explore conceptually related problems

vec a , vec b ,a n d vec c are three unit vectors and every two are inclined to each other at an angel cos^(-1)(3//5)dot If vec axx vec b=p vec a+q vec b+r vec c ,w h e r ep ,q ,r are scalars, then find the value of qdot

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is pi/2, then

If vec a ,\ vec b ,\ vec c are non coplanar vectors, prove that the following vectors are non coplanar: \ 2 vec a- vec b+3 vec c ,\ vec a+ vec b-2 vec c\ a n d\ vec a+ vec b-3 vec c

If vec a ,\ vec b ,\ vec c are non coplanar vectors, prove that the following vectors are non coplanar: \ vec a+2 vec b+3 vec c ,\ 2 vec a+ vec b+3 vec c\ a n d\ vec a+ vec b+ vec c

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

If vec a ,\ vec b ,\ vec c are three vectors such that vec a. vec b= vec a.\ vec c and vec a\ xx\ vec b= vec a\ xx\ vec c ,\ vec a\ !=0 , then show that vec b= vec c .

If vec a , vec b and vec c are three non-coplanar vectors, then ( vec a+ vec b+ vec c).[( vec a+ vec b)xx( vec a+ vec c)] equals a. 0 b. [ vec a vec b vec c] c. 2[ vec a vec b vec c] d. -[ vec a vec b vec c]

If vec( a) , vec( b) , vec( c ) are non coplanar non-zero vectors such that vec( b) xxvec( c) = vec( a ), vec( a ) xx vec( b) =vec( c ) and vec( c ) xx vec( a ) = vec ( b ) , then which of the following is not true

The resultant vec(P) and vec(Q) is perpendicular to vec(P) . What is the angle between vec(P) and vec(Q) ?

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2