Home
Class 12
MATHS
Let f(x) = 1 + 4x - x^(2), AA x in R g...

Let `f(x) = 1 + 4x - x^(2), AA x in R`
`g(x) = max {f(t), x le t le (x + 1), 0 le x lt 3} = min {(x + 3), 3 le x le 5}` Verify conntinuity of g(x), for all `x in [0, 5]`

Text Solution

Verified by Experts

`f(x)=x^(3)-3x^(2)+6`
If `f'(x)=3x^(2)-6x=0`, then `x=0, 2` are the critical points of `f(x)`.
`x=0` is the point of local maxima and x=2 is the point of local minima.
Clearly, `f(x) ` is increasing in `(-oo,0)` and `(2, oo)` and decreasing in (0,2).

Case 1 : ` x+2 le 0 rArr x le -2`
`rArr " " g(x)=f(x+2), -3 le x le -2`
Case 2: `x+1 lt 0 ` and `0 lt x+2 lt 2`
`x lt -1 ` and `-2 lt x lt 0`
i.e., `-2 lt x lt -1 " " :. g(x)=f(0)`
Case 3: `0 le x+1, x+2 le 2`
`rArr -1 le x le 0, g(x)=f(x+1)`
`rArr g(x)={{:(f(x+2)", " -3 le x lt -2),(f(0)", " -2le x lt -1),(f(x+1)", " -1 le x lt 0),(1-x ", "0 lexlt1):}`
Promotional Banner

Topper's Solved these Questions

  • GRAPHS OF POLYNOMIAL AND RATIONAL FUNCTIONS

    CENGAGE ENGLISH|Exercise Exercises|17 Videos
  • GRAPHICAL TRANSFORMATIONS

    CENGAGE ENGLISH|Exercise ILLUSTRATION|78 Videos
  • GRAPHS OF ELEMENTARY FUNCTIONS

    CENGAGE ENGLISH|Exercise EXERCISES|34 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = 1 + 4x - x^(2), AA x in R g(x) = max {f(t), x le t le (x + 1), 0 le x lt 3min {(x + 3), 3 le x le 5} Verify conntinuity of g(x), for all x in [0, 5]

Let |f (x)| le sin ^(2) x, AA x in R, then

Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le x,"for",0 le x le 1),(3-x",",1 lt x le 2,,):} Then, g(x) in [0, 2] is

Let f(x) = {{:( x^(3) + x^(2) - 10 x ,, -1 le x lt 0) , (sin x ,, 0 le x lt x//2) , (1 + cos x ,, pi //2 le x le x ):} then f(x) has

Let f (x)= max (x,x ^(2) x ^(3)) in -2 le x le 2. Then:

Let f (x)= [{:(x ^(2)+a,0 le x lt 1),( 2x+b,1le x le 2):}and g (x)=[{:(3x+b,0 le x lt 1),(x ^(3), 1 le x le 2):} If derivative of f(x) w.r.t. g (x ) at x =1 exists and is equal to lamda, then which of the followig is/are correct?

Let f(x) ={{:( x+2, 0 le x lt 2),( 6-x, x ge 2):}, g(x) ={{:( 1+ tan x, 0le x lt (pi) /(4)),( 3-cotx,(pi)/(4) le x lt pi ):} f(g(x)) is

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

If f(x) = -1 +|x-1|, -1 le x le 3 " and " g(x)=2-|x+1|, -2 le x le 2, then find fog(x) " and " gof(x).

{:(f(x) = cos x and H_(1)(x) = min{f(t), 0 le t lt x},),(0 le x le (pi)/(2) = (pi)/(2)-x,(pi)/(2) lt x le pi),(f(x) = cos x and H_(2) (x) = max {f(t), o le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x","(pi)/(2) lt x le pi),(g(x) = sin x and H_(3)(x) = min{g(t),0 le t le x},),(0 le x le (pi)/(2)=(pi)/(2) - x, (pi)/(2) le x le pi),(g(x) = sin x and H_(4)(x) = max{g(t),0 le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x, (pi)/(2) lt x le pi):} Which of the following is true for H_(3) (x) ?