Home
Class 12
MATHS
Evaluate lim(xto0) (e^(x^(2))-cosx)/(x^(...

Evaluate `lim_(xto0) (e^(x^(2))-cosx)/(x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{e^{x^2} - \cos x}{x^2} \] we first notice that substituting \(x = 0\) directly into the expression results in the indeterminate form \(\frac{0}{0}\). Therefore, we can apply L'Hôpital's Rule, which states that if we have an indeterminate form of type \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\), we can take the derivative of the numerator and the derivative of the denominator separately. ### Step 1: Apply L'Hôpital's Rule We differentiate the numerator and denominator: - **Numerator**: The derivative of \(e^{x^2}\) is \(e^{x^2} \cdot 2x\) (using the chain rule), and the derivative of \(-\cos x\) is \(\sin x\). Therefore, the derivative of the numerator is: \[ \frac{d}{dx}(e^{x^2} - \cos x) = e^{x^2} \cdot 2x + \sin x \] - **Denominator**: The derivative of \(x^2\) is \(2x\). Now we can rewrite our limit: \[ \lim_{x \to 0} \frac{e^{x^2} \cdot 2x + \sin x}{2x} \] ### Step 2: Substitute \(x = 0\) Substituting \(x = 0\) into the new limit gives us: \[ \frac{e^{0} \cdot 2 \cdot 0 + \sin(0)}{2 \cdot 0} = \frac{0 + 0}{0} = \frac{0}{0} \] This is still an indeterminate form, so we apply L'Hôpital's Rule again. ### Step 3: Differentiate Again We differentiate the numerator and denominator again: - **Numerator**: For \(e^{x^2} \cdot 2x + \sin x\): Using the product rule on \(e^{x^2} \cdot 2x\): \[ \frac{d}{dx}(e^{x^2} \cdot 2x) = e^{x^2} \cdot 2x \cdot 2 + e^{x^2} \cdot 2 = 2e^{x^2}(2x + 1) \] The derivative of \(\sin x\) is \(\cos x\). Therefore, the new numerator is: \[ 2e^{x^2}(2x + 1) + \cos x \] - **Denominator**: The derivative of \(2x\) is \(2\). Now we rewrite our limit again: \[ \lim_{x \to 0} \frac{2e^{x^2}(2x + 1) + \cos x}{2} \] ### Step 4: Substitute \(x = 0\) Again Substituting \(x = 0\) gives us: \[ \frac{2e^{0}(2 \cdot 0 + 1) + \cos(0)}{2} = \frac{2 \cdot 1 \cdot 1 + 1}{2} = \frac{2 + 1}{2} = \frac{3}{2} \] ### Final Result Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{e^{x^2} - \cos x}{x^2} = \frac{3}{2} \]

To evaluate the limit \[ \lim_{x \to 0} \frac{e^{x^2} - \cos x}{x^2} \] we first notice that substituting \(x = 0\) directly into the expression results in the indeterminate form \(\frac{0}{0}\). Therefore, we can apply L'Hôpital's Rule, which states that if we have an indeterminate form of type \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\), we can take the derivative of the numerator and the derivative of the denominator separately. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.7|7 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.5|12 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (e^(x)+e^(-x)-2)/(x^(2))

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)

Evaluate : lim_(xto0) (e^(x) -e^(-x))/x

Evaluate: ("lim")_(xvec0)(e^x^2-cosx)/(x^2)

Evaluate lim_(xto0) (e^(x)-e^(xcosx))/(x+sinx).

Evaluate lim_(xto0)(int_(0)^(x^(2))cos^(2)tdt)/(x sin x)

Evaluate lim_(xto0) (cot2x-cosec2x)/(x).

Evaluate lim_(xto0) ((1)/(x^(2))-(1)/(sin^(2)x)).

Evaluate : lim_(xto0) (a^(x)-b^(x))/x