Home
Class 12
MATHS
Evaluate lim(xto0) (e^(x)+e^(-x)-2)/(x^(...

Evaluate `lim_(xto0) (e^(x)+e^(-x)-2)/(x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{e^x + e^{-x} - 2}{x^2}, \] we first notice that substituting \( x = 0 \) directly into the expression gives us the form \( \frac{0}{0} \), which is indeterminate. Therefore, we can apply L'Hôpital's Rule, which states that if we have an indeterminate form \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \), we can take the derivative of the numerator and the derivative of the denominator separately. ### Step 1: Differentiate the numerator and denominator The numerator is \( e^x + e^{-x} - 2 \). The derivative of this is: \[ \frac{d}{dx}(e^x + e^{-x} - 2) = e^x - e^{-x}. \] The denominator is \( x^2 \). The derivative of this is: \[ \frac{d}{dx}(x^2) = 2x. \] Now we can rewrite our limit using these derivatives: \[ \lim_{x \to 0} \frac{e^x - e^{-x}}{2x}. \] ### Step 2: Evaluate the limit again Substituting \( x = 0 \) into this new expression also gives us \( \frac{0}{0} \). We apply L'Hôpital's Rule again. Differentiate the numerator \( e^x - e^{-x} \): \[ \frac{d}{dx}(e^x - e^{-x}) = e^x + e^{-x}. \] Differentiate the denominator \( 2x \): \[ \frac{d}{dx}(2x) = 2. \] Now we have: \[ \lim_{x \to 0} \frac{e^x + e^{-x}}{2}. \] ### Step 3: Substitute \( x = 0 \) Now we can substitute \( x = 0 \): \[ \frac{e^0 + e^0}{2} = \frac{1 + 1}{2} = \frac{2}{2} = 1. \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{e^x + e^{-x} - 2}{x^2} = 1. \]

To evaluate the limit \[ \lim_{x \to 0} \frac{e^x + e^{-x} - 2}{x^2}, \] we first notice that substituting \( x = 0 \) directly into the expression gives us the form \( \frac{0}{0} \), which is indeterminate. Therefore, we can apply L'Hôpital's Rule, which states that if we have an indeterminate form \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \), we can take the derivative of the numerator and the derivative of the denominator separately. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.7|7 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.5|12 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate : lim_(xto0) (e^(x) -e^(-x))/x

Evaluate lim_(xto0) (e^(x)-e^(-x)-2x)/(x-sinx).

Evaluate lim_(xto0) (e^(x^(2))-cosx)/(x^(2))

Evaluate : lim_(xto0) (a^(x)-b^(x))/x

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate : lim_(xto8)(e^(x)-e^(8))/(x-8)

Evaluate lim_(xto0)(3^(2x)-2^(3x))/(x).

Evaluate lim_(xto0)|x|^(sinx)

Evaluate lim_(xto0)(cosecx)^(x) .

Evaluate the following limits : Lim_(x to 0) (e^(x) +e^(-x)-2)/(x^(2))