Home
Class 12
MATHS
lim(xtoa) (log(x-a))/(log(e^(x)-e^(a)))...

`lim_(xtoa) (log(x-a))/(log(e^(x)-e^(a)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to a} \frac{\log(x-a)}{\log(e^x - e^a)} \] we first recognize that as \( x \) approaches \( a \), both the numerator and denominator approach \( \log(0) \), which is undefined. This gives us an indeterminate form of \( \frac{0}{0} \). Therefore, we can apply L'Hôpital's Rule, which states that if we have an indeterminate form \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \), we can take the derivative of the numerator and the denominator separately. ### Step-by-Step Solution: 1. **Identify the limit**: \[ \lim_{x \to a} \frac{\log(x-a)}{\log(e^x - e^a)} \] 2. **Check the form**: As \( x \to a \), both \( \log(x-a) \) and \( \log(e^x - e^a) \) approach \( \log(0) \), confirming we have the \( \frac{0}{0} \) form. 3. **Apply L'Hôpital's Rule**: Differentiate the numerator and denominator: - The derivative of the numerator \( \log(x-a) \) is: \[ \frac{d}{dx} \log(x-a) = \frac{1}{x-a} \] - The derivative of the denominator \( \log(e^x - e^a) \) is: \[ \frac{d}{dx} \log(e^x - e^a) = \frac{e^x}{e^x - e^a} \] 4. **Rewrite the limit**: Now we can rewrite the limit as: \[ \lim_{x \to a} \frac{\frac{1}{x-a}}{\frac{e^x}{e^x - e^a}} = \lim_{x \to a} \frac{e^x - e^a}{(x-a)e^x} \] 5. **Evaluate the new limit**: As \( x \to a \), both the numerator and denominator again approach \( 0 \), so we apply L'Hôpital's Rule again: - The derivative of the numerator \( e^x - e^a \) is: \[ e^x \] - The derivative of the denominator \( (x-a)e^x \) using the product rule is: \[ e^x + (x-a)e^x = e^x(1 + (x-a)) \] 6. **Rewrite the limit again**: Now we have: \[ \lim_{x \to a} \frac{e^x}{e^x(1 + (x-a))} = \lim_{x \to a} \frac{1}{1 + (x-a)} \] 7. **Evaluate the limit**: As \( x \to a \): \[ \frac{1}{1 + (a-a)} = \frac{1}{1} = 1 \] ### Final Answer: Thus, the limit is: \[ \lim_{x \to a} \frac{\log(x-a)}{\log(e^x - e^a)} = 1 \]

To solve the limit \[ \lim_{x \to a} \frac{\log(x-a)}{\log(e^x - e^a)} \] we first recognize that as \( x \) approaches \( a \), both the numerator and denominator approach \( \log(0) \), which is undefined. This gives us an indeterminate form of \( \frac{0}{0} \). Therefore, we can apply L'Hôpital's Rule, which states that if we have an indeterminate form \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \), we can take the derivative of the numerator and the denominator separately. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.7|7 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.5|12 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: ("lim")_(xveca)("log"(x-a))/(log(e^x-e^a))

Evaluate lim_(xto2) sin(e^(x-2)-1)/(log(x-1))

The value of lim_(x to oo ) (log_(e)(log_(e)x))/(e^(sqrt(x))) is _________. (a) π/ 2 (b)0 (c)-π (d)π

lim_(xrarroo) [x-log_(e)((e^(x)+e^(-x))/(2))]=

Let f(x) be defined for all x in R such that lim_(xrarr0) [f(x)+log(1-(1)/(e^(f(x))))-log(f(x))]=0 . Then f(0) is

Evaluate the following limits : Lim_(x to a) (log x - log a )/(x - a)

lim_(xrarre) (log_(e)x-1)/(|x-e|) is

Evaluate lim_(xtooo) (log_(e)x)/(x)

Evaluate lim_(xto1) (x^(2)+xlog_(e)x-log_(e)x-1)/((x^(2))-1)

Evaluate the following limits : Lim_(xto2) (sin(e^(x-2)-1))/(log(x-1))