Home
Class 12
MATHS
Evaluate lim(xto0) (a^(tanx)-a^(sinx))/(...

Evaluate `lim_(xto0) (a^(tanx)-a^(sinx))/(tanx-sinx),agt0`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{a^{\tan x} - a^{\sin x}}{\tan x - \sin x}, \quad a > 0, \] we will follow these steps: ### Step 1: Rewrite the limit expression We start with the limit expression: \[ \lim_{x \to 0} \frac{a^{\tan x} - a^{\sin x}}{\tan x - \sin x}. \] ### Step 2: Factor out \(a^{\sin x}\) from the numerator We can factor \(a^{\sin x}\) out of the numerator: \[ = \lim_{x \to 0} \frac{a^{\sin x} \left( a^{\tan x - \sin x} - 1 \right)}{\tan x - \sin x}. \] ### Step 3: Evaluate \(a^{\sin x}\) as \(x\) approaches 0 As \(x\) approaches 0, \(\sin x\) approaches 0. Thus, \[ a^{\sin x} \to a^0 = 1. \] ### Step 4: Simplify the limit Now we need to evaluate the limit of the remaining part: \[ \lim_{x \to 0} \frac{a^{\tan x - \sin x} - 1}{\tan x - \sin x}. \] ### Step 5: Use the identity for limits We can use the identity: \[ \lim_{u \to 0} \frac{a^u - 1}{u} = \ln a, \] where \(u = \tan x - \sin x\). To apply this identity, we need to find the limit of \(\tan x - \sin x\) as \(x \to 0\). ### Step 6: Evaluate \(\tan x - \sin x\) Using Taylor series expansions around \(x = 0\): \[ \tan x \approx x + \frac{x^3}{3} + O(x^5), \] \[ \sin x \approx x - \frac{x^3}{6} + O(x^5). \] Thus, \[ \tan x - \sin x \approx \left( x + \frac{x^3}{3} \right) - \left( x - \frac{x^3}{6} \right) = \frac{x^3}{3} + \frac{x^3}{6} = \frac{x^3}{2}. \] ### Step 7: Substitute back into the limit Now, substituting back, we have: \[ \lim_{x \to 0} \frac{a^{\tan x - \sin x} - 1}{\tan x - \sin x} = \lim_{x \to 0} \frac{a^{\frac{x^3}{2}} - 1}{\frac{x^3}{2}}. \] ### Step 8: Apply the identity As \(x \to 0\), \(\frac{x^3}{2} \to 0\). Thus, we can apply the identity: \[ \lim_{u \to 0} \frac{a^u - 1}{u} = \ln a, \] which gives us: \[ \lim_{x \to 0} \frac{a^{\frac{x^3}{2}} - 1}{\frac{x^3}{2}} = \ln a. \] ### Step 9: Combine results Putting everything together, we have: \[ \lim_{x \to 0} \frac{a^{\tan x} - a^{\sin x}}{\tan x - \sin x} = a^0 \cdot \ln a = 1 \cdot \ln a = \ln a. \] ### Final Answer Thus, the final answer is: \[ \ln a. \]

To evaluate the limit \[ \lim_{x \to 0} \frac{a^{\tan x} - a^{\sin x}}{\tan x - \sin x}, \quad a > 0, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.7|7 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.5|12 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: ("lim")_(xvec0)(a^(tanx)-a^(sinx))/(tanx-sinx),a >0

lim_(xto0) (e^(tanx)-e^x)/(tanx-x)=

Evaluate lim_(xto0) (tan2x-x)/(3x-sinx).

Evaluate : lim_(x to 0 ) (3^(x) -2^(x))/(tanx)

Evaluate lim_(xto0)|x|^(sinx)

Evaluate lim_(xto0)(tanx-sinx)/(x^(3)).

Evaluate lim_(xto0) (e^(sinx)-(1+sinx))/((tan(sinx))^(2))

Evaluate lim_(xto0) (e^(x)-e^(xcosx))/(x+sinx).

Evaluate : lim_(xto 0)(3^(x)-2^(x))/(tanx)

lim_(xrarr0) (e^(tanx)-e^x)/(tanx-x)=