Home
Class 12
MATHS
lim(xto0) ((1-3^(x)-4^(x)+12^(x)))/(sqrt...

`lim_(xto0) ((1-3^(x)-4^(x)+12^(x)))/(sqrt((2cosx+7))-3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \[ \lim_{x \to 0} \frac{1 - 3^x - 4^x + 12^x}{\sqrt{2 \cos x + 7} - 3}, \] we will follow these steps: ### Step 1: Evaluate the limit directly First, we substitute \(x = 0\) into the expression: \[ 1 - 3^0 - 4^0 + 12^0 = 1 - 1 - 1 + 1 = 0, \] and for the denominator: \[ \sqrt{2 \cos(0) + 7} - 3 = \sqrt{2 \cdot 1 + 7} - 3 = \sqrt{9} - 3 = 3 - 3 = 0. \] Since both the numerator and denominator approach 0, we have a \( \frac{0}{0} \) indeterminate form. ### Step 2: Simplify the expression We can simplify the numerator. Notice that \(12^x = (3 \cdot 4)^x = 3^x \cdot 4^x\). Thus, we can rewrite the numerator: \[ 1 - 3^x - 4^x + 12^x = 1 - 3^x - 4^x + 3^x \cdot 4^x. \] ### Step 3: Factor the numerator We can factor the numerator as follows: \[ 1 - 3^x - 4^x + 3^x \cdot 4^x = (1 - 3^x)(1 - 4^x). \] ### Step 4: Rationalize the denominator Next, we rationalize the denominator: \[ \sqrt{2 \cos x + 7} - 3 = \frac{(2 \cos x + 7) - 9}{\sqrt{2 \cos x + 7} + 3} = \frac{2 \cos x - 2}{\sqrt{2 \cos x + 7} + 3} = \frac{2(\cos x - 1)}{\sqrt{2 \cos x + 7} + 3}. \] ### Step 5: Substitute back into the limit Now, substituting back into the limit: \[ \lim_{x \to 0} \frac{(1 - 3^x)(1 - 4^x)}{\frac{2(\cos x - 1)}{\sqrt{2 \cos x + 7} + 3}} = \lim_{x \to 0} \frac{(1 - 3^x)(1 - 4^x)(\sqrt{2 \cos x + 7} + 3)}{2(\cos x - 1)}. \] ### Step 6: Apply L'Hôpital's Rule or use known limits We can apply the known limits: \[ \lim_{x \to 0} \frac{1 - a^x}{x} = -\ln a, \] for \(a = 3\) and \(a = 4\): \[ \lim_{x \to 0} \frac{1 - 3^x}{x} = -\ln 3, \] \[ \lim_{x \to 0} \frac{1 - 4^x}{x} = -\ln 4. \] ### Step 7: Evaluate the limit Now we can evaluate the limit: \[ \lim_{x \to 0} \frac{(-\ln 3)(-\ln 4)(\sqrt{2 \cdot 1 + 7} + 3)}{2 \cdot (-1)} = \frac{\ln 3 \cdot \ln 4 \cdot (3 + 3)}{2} = \frac{6 \ln 3 \cdot \ln 4}{2} = 3 \ln 3 \cdot \ln 4. \] ### Final Answer Thus, the final answer is: \[ \lim_{x \to 0} \frac{1 - 3^x - 4^x + 12^x}{\sqrt{2 \cos x + 7} - 3} = 3 \ln 3 \cdot \ln 4. \] ---

To solve the limit problem \[ \lim_{x \to 0} \frac{1 - 3^x - 4^x + 12^x}{\sqrt{2 \cos x + 7} - 3}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.7|7 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.5|12 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: ("lim")_(xvec0)((1-3^x-4^x+12^x))/(sqrt((2cosx+7))-3)

lim_(xto0)((e^(x)-1)/x)^(1//x)

Evaluate lim_(xto0)(3^(2x)-2^(3x))/(x).

(ii) lim_(xto0) ((1+x)^3-(1-x)^3)/x

Slove lim_(xto0)((1+x)^(1//x)-e)/x

The value of the limit lim_(xto0) (a^(sqrt(x))-a^(1//sqrt(x)))/(a^(sqrt(x))+a^(1//sqrt(x))),agt1, is

lim_(xto0) ((729)^(x)-(243)^(x)-(81)^(x)+9^(x)+3^(x)-1)/(x^(3))

The value of lim_(xto2) (((x^(3)-4x)/(x^(3)-8))^(-1)-((x+sqrt(2x))/(x-2)-(sqrt(2))/(sqrt(x)-sqrt(2)))^(-1))" is "

lim_(xto0) (sqrt(1-cos 2x))/(sqrt2x) is equal to-

Evaluate lim_(xto0) (2^(x)-1)/(sqrt(1+x)-1).