Home
Class 12
MATHS
The value of int(0)^(1)(8log(1+x))/(1+x^...

The value of `int_(0)^(1)(8log(1+x))/(1+x^(2))dx` is

A

`log 2`

B

`pi log 2`

C

`(pi)/8 log 2`

D

`(pi)/2 log 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \frac{8 \log(1+x)}{1+x^2} \, dx \), we will use a substitution and properties of definite integrals. Here’s a step-by-step solution: ### Step 1: Substitution Let \( x = \tan \theta \). Then, we have: \[ dx = \sec^2 \theta \, d\theta \] When \( x = 0 \), \( \theta = 0 \) and when \( x = 1 \), \( \theta = \frac{\pi}{4} \). ### Step 2: Change of Limits and Expression Now substituting in the integral, we get: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{8 \log(1 + \tan \theta)}{1 + \tan^2 \theta} \sec^2 \theta \, d\theta \] Since \( 1 + \tan^2 \theta = \sec^2 \theta \), the integral simplifies to: \[ I = \int_{0}^{\frac{\pi}{4}} 8 \log(1 + \tan \theta) \, d\theta \] ### Step 3: Using the Property of Definite Integrals Using the property of definite integrals: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] We can express \( I \) as: \[ I = 8 \int_{0}^{\frac{\pi}{4}} \log(1 + \tan(\frac{\pi}{4} - \theta)) \, d\theta \] Using the identity \( \tan(\frac{\pi}{4} - \theta) = \frac{1 - \tan \theta}{1 + \tan \theta} \): \[ I = 8 \int_{0}^{\frac{\pi}{4}} \log\left(1 + \frac{1 - \tan \theta}{1 + \tan \theta}\right) \, d\theta \] ### Step 4: Simplifying the Logarithm This simplifies to: \[ I = 8 \int_{0}^{\frac{\pi}{4}} \log\left(\frac{2}{1 + \tan \theta}\right) \, d\theta \] Breaking it down using properties of logarithms: \[ I = 8 \int_{0}^{\frac{\pi}{4}} \log(2) \, d\theta - 8 \int_{0}^{\frac{\pi}{4}} \log(1 + \tan \theta) \, d\theta \] ### Step 5: Combining the Integrals Let \( I = 8 \int_{0}^{\frac{\pi}{4}} \log(2) \, d\theta - 8I \): \[ I = 8 \log(2) \cdot \frac{\pi}{4} - 8I \] \[ 9I = 2\pi \log(2) \] \[ I = \frac{2\pi \log(2)}{9} \] ### Final Result Thus, the value of the integral is: \[ I = \frac{2\pi \log(2)}{9} \]

To solve the integral \( I = \int_{0}^{1} \frac{8 \log(1+x)}{1+x^2} \, dx \), we will use a substitution and properties of definite integrals. Here’s a step-by-step solution: ### Step 1: Substitution Let \( x = \tan \theta \). Then, we have: \[ dx = \sec^2 \theta \, d\theta \] When \( x = 0 \), \( \theta = 0 \) and when \( x = 1 \), \( \theta = \frac{\pi}{4} \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

Evaluate : int_(0)^(1)(log(1+x))/(1+x^2)dx

The value of integral int_(0)^(1)(log(1+x))/(1+x^(2))dx , is

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

Evaluate int_(0)^(1)(ln(1+x))/(1+x)dx

solve int_(1)^(2)(log x)/(x^(2))dx

The value of int_(0)^(1) (1)/(2x-3)dx is

int_(0)^(1)x log (1+2 x)dx

The value of int_(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x +sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(-x)dx ,

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=