Home
Class 12
MATHS
For x epsilon(0,(5pi)/2), definite f(x)...

For `x epsilon(0,(5pi)/2)`, definite `f(x)=int_(0)^(x)sqrt(t) sin t dt`. Then `f` has

A

local maximum at `pi` and local minima at `2pi`

B

local maximum at `pi` and `2pi`

C

local minimum at `pi` and `2pi`

D

local minimum at `pi` and local maximum at `2pi

Text Solution

Verified by Experts

The correct Answer is:
A

We have
`f(x)=int_(0)^(x)sqrt(t)sin t dt`
`impliesf'(x)=sqrt(x)sinx`
For maximum of minimum value of `f(x), f'(x)=0`
`impliesx=2npi,n epsilonZ`
Sign scheme of `f'(x)` for `xepsilon(0,(5pi)/2)` is

`f'(x)` changes its sign from +ve to -ve in the neighborhood of `pi` and from -to + in the neighborhood of `2pi`.
Hence `f(x)` has local maximum at `x=pi` and local minima at `x=2pi`.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

For x in (0,(5pi)/2) , define f(x)""=int_0^xsqrt(t)sint"dt" Then f has : local maximum at pi and 2pi . local minimum at pi and 2pi local minimum at pi and local maximum at 2pi . local maximum at pi and local minimum at 2pi .

" If " f(x) =int_(0)^(x)" t sin t dt tehn " f(x) is

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If f(x)=int_0^x(sint)/t dt ,x >0, then

If f(x)=int_0^x tf(t)dt+2, then

Let f(x) = int_(0)^(x)|2t-3|dt , then f is

If int_(0)^(x^(2)) sqrt(1+t^(2)) dt, then f'(x)n equals

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If f(x)=int_(0)^(x)|t-1|dt , where 0lexle2 , then