Home
Class 12
MATHS
If g(x)=int(0)^(x)cos^(4)t dt, then g(x+...

If `g(x)=int_(0)^(x)cos^(4)t dt,` then `g(x+pi)` equals to (a)`(g(x))/(g(pi))` (b)`g(x)+g(pi)` (c)`g(x)-g(pi)` (d)`g(x).g(pi)`

A

`(g(x))/(g(pi))`

B

`g(x)+g(pi)`

C

`g(x)-g(pi)`

D

`g(x).g(pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( g(x + \pi) \) where \( g(x) = \int_{0}^{x} \cos^4 t \, dt \). ### Step-by-step Solution: 1. **Define the Function**: We have: \[ g(x) = \int_{0}^{x} \cos^4 t \, dt \] 2. **Substitute \( x + \pi \) into the Function**: We need to find: \[ g(x + \pi) = \int_{0}^{x + \pi} \cos^4 t \, dt \] 3. **Split the Integral**: We can split the integral into two parts: \[ g(x + \pi) = \int_{0}^{x} \cos^4 t \, dt + \int_{x}^{x + \pi} \cos^4 t \, dt \] The first part is simply \( g(x) \): \[ g(x + \pi) = g(x) + \int_{x}^{x + \pi} \cos^4 t \, dt \] 4. **Evaluate the Second Integral**: The integral \( \int_{x}^{x + \pi} \cos^4 t \, dt \) can be simplified using the periodicity of the cosine function. Since \( \cos^4 t \) is periodic with period \( \pi \), we have: \[ \int_{x}^{x + \pi} \cos^4 t \, dt = \int_{0}^{\pi} \cos^4 t \, dt \] 5. **Define \( g(\pi) \)**: We can express this integral as: \[ g(\pi) = \int_{0}^{\pi} \cos^4 t \, dt \] 6. **Combine the Results**: Therefore, we can write: \[ g(x + \pi) = g(x) + g(\pi) \] 7. **Conclusion**: Thus, the final result is: \[ g(x + \pi) = g(x) + g(\pi) \] ### Answer: The correct option is (b) \( g(x) + g(\pi) \).

To solve the problem, we need to find \( g(x + \pi) \) where \( g(x) = \int_{0}^{x} \cos^4 t \, dt \). ### Step-by-step Solution: 1. **Define the Function**: We have: \[ g(x) = \int_{0}^{x} \cos^4 t \, dt ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If g(x)=int_0^xcos^4tdt , then g(x+pi) equals (a) g(x)+g(pi) (b) g(x)-g(pi) (c) g(x)g(pi) (d) (g(x))/(g(pi))

If g(x)=int_(0)^(x)cos^(4)t dt , then prove that g(x+pi)=g(x)+g(pi) .

If g(x)""=int0xcos4t"dt" , then g(x""+pi) equals: (1) g(x)/(g(pi) (2) g(x)+g(pi) (3) g(x)-g(pi) (4) g(x)dotg(pi)

If g(x)=int_0^x(|sint|+|cost|)dt ,then g(x+(pin)/2) is equal to, where n in N , (a) g(x)+g(pi) (b) g(x)+g((npi)/(2)) (c) g(x)+g(pi/2) (d) none of these

If g(x)=int_0^x(|sint|+|cost|)dt ,t h e ng(x+(pin)/2) is equal to, where n in N , a) g(x)+g(pi) (b) g(x)+ng((pi)/(n2)) c) g(x)+g(pi/2) (d) none of these

If f(x) = 2 sinx, g(x) = cos^(2) x , then the value of (f+g)((pi)/(3))

If g(x)=int_(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n : (a) g^(prime)(pi/2)=-2pi (b) g^(prime)(-pi/2)=-2pi (c) g^(prime)(-pi/2)=2pi (d) g^(prime)(pi/2)=2pi

If (x-1) is a factor of polynomial f(x) but not of g(x) , then it must be a factor of (a) f(x)g(x) (b) -f\ (x)+\ g(x) (c) f(x)-g(x) (d) {f(x)+g(x)}g(x)

If differentiable function f(x) in inverse of g(x) then f^(g(x)) is equal to (g^(x))/((g^(prime)(x))^3) 2. 0 3. (g^(x))/((g^(prime)(x))^2) 4. 1

If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to (A) f(a) = g(c ) (B) f(b) = g(b) (C) f(d) = g(b) (D) f(c ) = g(a)